using System; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Security.Cryptography; using System.Text; using System.Threading.Tasks; using static System.Numerics.BitOperations; namespace PspCrypto.Security.Cryptography { internal sealed class SHAManagedHashProvider : HashProvider { private int hashSizeInBytes; private SHAManagedImplementationBase impl; private MemoryStream buffer; public SHAManagedHashProvider(string hashAlgorithmId) { switch (hashAlgorithmId) { case HashAlgorithmNames.SHA224: impl = new SHA224ManagedImplementation(); hashSizeInBytes = 28; break; default: throw new CryptographicException(string.Format("'{0}' is not a known hash algorithm.", hashAlgorithmId)); } } public override void AppendHashData(ReadOnlySpan data) { buffer ??= new MemoryStream(1000); buffer.Write(data); } public override int FinalizeHashAndReset(Span destination) { GetCurrentHash(destination); buffer = null; return hashSizeInBytes; } public override int GetCurrentHash(Span destination) { Debug.Assert(destination.Length >= hashSizeInBytes); impl.Initialize(); if (buffer != null) { impl.HashCore(buffer.GetBuffer(), 0, (int)buffer.Length); } impl.HashFinal().CopyTo(destination); return hashSizeInBytes; } public override int HashSizeInBytes => hashSizeInBytes; public override void Reset() { buffer = null; impl.Initialize(); } public override void Dispose(bool disposing) { } private abstract class SHAManagedImplementationBase { public abstract void Initialize(); public abstract void HashCore(byte[] partIn, int ibStart, int cbSize); public abstract byte[] HashFinal(); } private sealed class SHA224ManagedImplementation : SHAManagedImplementationBase { private byte[] _buffer; private long _count; // Number of bytes in the hashed message private uint[] _stateSHA224; private uint[] _W; public SHA224ManagedImplementation() { _stateSHA224 = new uint[8]; _buffer = new byte[64]; _W = new uint[64]; InitializeState(); } public override void Initialize() { InitializeState(); // Zeroize potentially sensitive information. Array.Clear(_buffer, 0, _buffer.Length); Array.Clear(_W, 0, _W.Length); } private void InitializeState() { _count = 0; _stateSHA224[0] = 0xc1059ed8; _stateSHA224[1] = 0x367cd507; _stateSHA224[2] = 0x3070dd17; _stateSHA224[3] = 0xf70e5939; _stateSHA224[4] = 0xffc00b31; _stateSHA224[5] = 0x68581511; _stateSHA224[6] = 0x64f98fa7; _stateSHA224[7] = 0xbefa4fa4; } /* SHA256 block update operation. Continues an SHA message-digest operation, processing another message block, and updating the context. */ public override unsafe void HashCore(byte[] partIn, int ibStart, int cbSize) { int bufferLen; int partInLen = cbSize; int partInBase = ibStart; /* Compute length of buffer */ bufferLen = (int)(_count & 0x3f); /* Update number of bytes */ _count += partInLen; fixed (uint* stateSHA256 = _stateSHA224) { fixed (byte* buffer = _buffer) { fixed (uint* expandedBuffer = _W) { if (bufferLen > 0 && bufferLen + partInLen >= 64) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, 64 - bufferLen); partInBase += 64 - bufferLen; partInLen -= 64 - bufferLen; SHATransform(expandedBuffer, stateSHA256, buffer); bufferLen = 0; } /* Copy input to temporary buffer and hash */ while (partInLen >= 64) { Buffer.BlockCopy(partIn, partInBase, _buffer, 0, 64); partInBase += 64; partInLen -= 64; SHATransform(expandedBuffer, stateSHA256, buffer); } if (partInLen > 0) { Buffer.BlockCopy(partIn, partInBase, _buffer, bufferLen, partInLen); } } } } } /* SHA256 finalization. Ends an SHA256 message-digest operation, writing the message digest. */ public override byte[] HashFinal() { byte[] pad; int padLen; long bitCount; byte[] hash = new byte[28]; // HashSizeValue = 224 /* Compute padding: 80 00 00 ... 00 00 */ padLen = 64 - (int)(_count & 0x3f); if (padLen <= 8) padLen += 64; pad = new byte[padLen]; pad[0] = 0x80; // Convert count to bit count bitCount = _count * 8; pad[padLen - 8] = (byte)(bitCount >> 56 & 0xff); pad[padLen - 7] = (byte)(bitCount >> 48 & 0xff); pad[padLen - 6] = (byte)(bitCount >> 40 & 0xff); pad[padLen - 5] = (byte)(bitCount >> 32 & 0xff); pad[padLen - 4] = (byte)(bitCount >> 24 & 0xff); pad[padLen - 3] = (byte)(bitCount >> 16 & 0xff); pad[padLen - 2] = (byte)(bitCount >> 8 & 0xff); pad[padLen - 1] = (byte)(bitCount >> 0 & 0xff); /* Digest padding */ HashCore(pad, 0, pad.Length); /* Store digest */ SHAUtils.DWORDToBigEndian(hash, _stateSHA224, 7); return hash; } private static readonly uint[] _K = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; private static unsafe void SHATransform(uint* expandedBuffer, uint* state, byte* block) { uint a, b, c, d, e, f, h, g; uint aa, bb, cc, dd, ee, ff, hh, gg; uint T1; a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; f = state[5]; g = state[6]; h = state[7]; // fill in the first 16 bytes of W. SHAUtils.DWORDFromBigEndian(expandedBuffer, 16, block); SHA256Expand(expandedBuffer); /* Apply the SHA256 compression function */ // We are trying to be smart here and avoid as many copies as we can // The perf gain with this method over the straightforward modify and shift // forward is >= 20%, so it's worth the pain for (int j = 0; j < 64;) { T1 = h + Sigma_1(e) + Ch(e, f, g) + _K[j] + expandedBuffer[j]; ee = d + T1; aa = T1 + Sigma_0(a) + Maj(a, b, c); j++; T1 = g + Sigma_1(ee) + Ch(ee, e, f) + _K[j] + expandedBuffer[j]; ff = c + T1; bb = T1 + Sigma_0(aa) + Maj(aa, a, b); j++; T1 = f + Sigma_1(ff) + Ch(ff, ee, e) + _K[j] + expandedBuffer[j]; gg = b + T1; cc = T1 + Sigma_0(bb) + Maj(bb, aa, a); j++; T1 = e + Sigma_1(gg) + Ch(gg, ff, ee) + _K[j] + expandedBuffer[j]; hh = a + T1; dd = T1 + Sigma_0(cc) + Maj(cc, bb, aa); j++; T1 = ee + Sigma_1(hh) + Ch(hh, gg, ff) + _K[j] + expandedBuffer[j]; h = aa + T1; d = T1 + Sigma_0(dd) + Maj(dd, cc, bb); j++; T1 = ff + Sigma_1(h) + Ch(h, hh, gg) + _K[j] + expandedBuffer[j]; g = bb + T1; c = T1 + Sigma_0(d) + Maj(d, dd, cc); j++; T1 = gg + Sigma_1(g) + Ch(g, h, hh) + _K[j] + expandedBuffer[j]; f = cc + T1; b = T1 + Sigma_0(c) + Maj(c, d, dd); j++; T1 = hh + Sigma_1(f) + Ch(f, g, h) + _K[j] + expandedBuffer[j]; e = dd + T1; a = T1 + Sigma_0(b) + Maj(b, c, d); j++; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } private static uint Ch(uint x, uint y, uint z) { return x & y ^ (x ^ 0xffffffff) & z; } private static uint Maj(uint x, uint y, uint z) { return x & y ^ x & z ^ y & z; } private static uint sigma_0(uint x) { return RotateRight(x, 7) ^ RotateRight(x, 18) ^ x >> 3; } private static uint sigma_1(uint x) { return RotateRight(x, 17) ^ RotateRight(x, 19) ^ x >> 10; } private static uint Sigma_0(uint x) { return RotateRight(x, 2) ^ RotateRight(x, 13) ^ RotateRight(x, 22); } private static uint Sigma_1(uint x) { return RotateRight(x, 6) ^ RotateRight(x, 11) ^ RotateRight(x, 25); } /* This function creates W_16,...,W_63 according to the formula W_j <- sigma_1(W_{j-2}) + W_{j-7} + sigma_0(W_{j-15}) + W_{j-16}; */ private static unsafe void SHA256Expand(uint* x) { for (int i = 16; i < 64; i++) { x[i] = sigma_1(x[i - 2]) + x[i - 7] + sigma_0(x[i - 15]) + x[i - 16]; } } } private static class SHAUtils { // digits == number of DWORDs public static unsafe void DWORDFromBigEndian(uint* x, int digits, byte* block) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 4) x[i] = (uint)(block[j] << 24 | block[j + 1] << 16 | block[j + 2] << 8 | block[j + 3]); } // encodes x (DWORD) into block (unsigned char), most significant byte first. // digits == number of DWORDs public static void DWORDToBigEndian(byte[] block, uint[] x, int digits) { int i; int j; for (i = 0, j = 0; i < digits; i++, j += 4) { block[j] = (byte)(x[i] >> 24 & 0xff); block[j + 1] = (byte)(x[i] >> 16 & 0xff); block[j + 2] = (byte)(x[i] >> 8 & 0xff); block[j + 3] = (byte)(x[i] & 0xff); } } } } }