psse-decrypt/c_version/md5.c

226 lines
7.0 KiB
C

/*
* Derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm
* and modified slightly to be functionally identical but condensed into control structures.
*/
#include "md5.h"
/*
* Constants defined by the MD5 algorithm
*/
#define A 0x67452301
#define B 0xefcdab89
#define C 0x98badcfe
#define D 0x10325476
static uint32_t S[] = {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22,
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23,
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21};
static uint32_t K[] = {0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee,
0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501,
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be,
0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821,
0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa,
0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8,
0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed,
0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a,
0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c,
0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70,
0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x04881d05,
0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665,
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039,
0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1,
0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1,
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391};
/*
* Bit-manipulation functions defined by the MD5 algorithm
*/
#define F(X, Y, Z) ((X & Y) | (~X & Z))
#define G(X, Y, Z) ((X & Z) | (Y & ~Z))
#define H(X, Y, Z) (X ^ Y ^ Z)
#define I(X, Y, Z) (Y ^ (X | ~Z))
/*
* Padding used to make the size (in bits) of the input congruent to 448 mod 512
*/
static uint8_t PADDING[] = {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
/*
* Initialize a context
*/
void md5Init(MD5Context *ctx){
ctx->size = (uint64_t)0;
ctx->buffer[0] = (uint32_t)A;
ctx->buffer[1] = (uint32_t)B;
ctx->buffer[2] = (uint32_t)C;
ctx->buffer[3] = (uint32_t)D;
}
/*
* Add some amount of input to the context
*
* If the input fills out a block of 512 bits, apply the algorithm (md5Step)
* and save the result in the buffer. Also updates the overall size.
*/
void md5Update(MD5Context *ctx, uint8_t *input_buffer, size_t input_len){
uint32_t input[16];
unsigned int offset = ctx->size % 64;
ctx->size += (uint64_t)input_len;
// Copy each byte in input_buffer into the next space in our context input
for(unsigned int i = 0; i < input_len; ++i){
ctx->input[offset++] = (uint8_t)*(input_buffer + i);
// If we've filled our context input, copy it into our local array input
// then reset the offset to 0 and fill in a new buffer.
// Every time we fill out a chunk, we run it through the algorithm
// to enable some back and forth between cpu and i/o
if(offset % 64 == 0){
for(unsigned int j = 0; j < 16; ++j){
// Convert to little-endian
// The local variable `input` our 512-bit chunk separated into 32-bit words
// we can use in calculations
input[j] = (uint32_t)(ctx->input[(j * 4) + 3]) << 24 |
(uint32_t)(ctx->input[(j * 4) + 2]) << 16 |
(uint32_t)(ctx->input[(j * 4) + 1]) << 8 |
(uint32_t)(ctx->input[(j * 4)]);
}
md5Step(ctx->buffer, input);
offset = 0;
}
}
}
/*
* Pad the current input to get to 448 bytes, append the size in bits to the very end,
* and save the result of the final iteration into digest.
*/
void md5Finalize(MD5Context *ctx){
uint32_t input[16];
unsigned int offset = ctx->size % 64;
unsigned int padding_length = offset < 56 ? 56 - offset : (56 + 64) - offset;
// Fill in the padding andndo the changes to size that resulted from the update
md5Update(ctx, PADDING, padding_length);
ctx->size -= (uint64_t)padding_length;
// Do a final update (internal to this function)
// Last two 32-bit words are the two halves of the size (converted from bytes to bits)
for(unsigned int j = 0; j < 14; ++j){
input[j] = (uint32_t)(ctx->input[(j * 4) + 3]) << 24 |
(uint32_t)(ctx->input[(j * 4) + 2]) << 16 |
(uint32_t)(ctx->input[(j * 4) + 1]) << 8 |
(uint32_t)(ctx->input[(j * 4)]);
}
input[14] = (uint32_t)(ctx->size * 8);
input[15] = (uint32_t)((ctx->size * 8) >> 32);
md5Step(ctx->buffer, input);
// Move the result into digest (convert from little-endian)
for(unsigned int i = 0; i < 4; ++i){
ctx->digest[(i * 4) + 0] = (uint8_t)((ctx->buffer[i] & 0x000000FF));
ctx->digest[(i * 4) + 1] = (uint8_t)((ctx->buffer[i] & 0x0000FF00) >> 8);
ctx->digest[(i * 4) + 2] = (uint8_t)((ctx->buffer[i] & 0x00FF0000) >> 16);
ctx->digest[(i * 4) + 3] = (uint8_t)((ctx->buffer[i] & 0xFF000000) >> 24);
}
}
/*
* Step on 512 bits of input with the main MD5 algorithm.
*/
void md5Step(uint32_t *buffer, uint32_t *input){
uint32_t AA = buffer[0];
uint32_t BB = buffer[1];
uint32_t CC = buffer[2];
uint32_t DD = buffer[3];
uint32_t E;
unsigned int j;
for(unsigned int i = 0; i < 64; ++i){
switch(i / 16){
case 0:
E = F(BB, CC, DD);
j = i;
break;
case 1:
E = G(BB, CC, DD);
j = ((i * 5) + 1) % 16;
break;
case 2:
E = H(BB, CC, DD);
j = ((i * 3) + 5) % 16;
break;
default:
E = I(BB, CC, DD);
j = (i * 7) % 16;
break;
}
uint32_t temp = DD;
DD = CC;
CC = BB;
BB = BB + rotateLeft(AA + E + K[i] + input[j], S[i]);
AA = temp;
}
buffer[0] += AA;
buffer[1] += BB;
buffer[2] += CC;
buffer[3] += DD;
}
/*
* Functions that will return a pointer to the hash of the provided input
*/
uint8_t* md5String(char *input){
MD5Context ctx;
md5Init(&ctx);
md5Update(&ctx, (uint8_t *)input, strlen(input));
md5Finalize(&ctx);
uint8_t *result = malloc(16);
memcpy(result, ctx.digest, 16);
return result;
}
uint8_t* md5File(FILE *file){
char *input_buffer = malloc(1024);
size_t input_size = 0;
MD5Context ctx;
md5Init(&ctx);
while((input_size = fread(input_buffer, 1, 1024, file)) > 0){
md5Update(&ctx, (uint8_t *)input_buffer, input_size);
}
md5Finalize(&ctx);
free(input_buffer);
uint8_t *result = malloc(16);
memcpy(result, ctx.digest, 16);
return result;
}
/*
* Rotates a 32-bit word left by n bits
*/
uint32_t rotateLeft(uint32_t x, uint32_t n){
return (x << n) | (x >> (32 - n));
}