// Copyright (c) 2009-2017 The OTS Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "cmap.h" #include #include #include #include #include "maxp.h" #include "os2.h" // cmap - Character To Glyph Index Mapping Table // http://www.microsoft.com/typography/otspec/cmap.htm namespace { struct CMAPSubtableHeader { uint16_t platform; uint16_t encoding; uint32_t offset; uint16_t format; uint32_t length; uint32_t language; }; struct Subtable314Range { uint16_t start_range; uint16_t end_range; int16_t id_delta; uint16_t id_range_offset; uint32_t id_range_offset_offset; }; // Glyph array size for the Mac Roman (format 0) table. const size_t kFormat0ArraySize = 256; // The upper limit of the Unicode code point. const uint32_t kUnicodeUpperLimit = 0x10FFFF; // The maximum number of UVS records (See below). const uint32_t kMaxCMAPSelectorRecords = 259; // The range of UVSes are: // 0x180B-0x180D (3 code points) // 0xFE00-0xFE0F (16 code points) // 0xE0100-0xE01EF (240 code points) const uint32_t kMongolianVSStart = 0x180B; const uint32_t kMongolianVSEnd = 0x180D; const uint32_t kVSStart = 0xFE00; const uint32_t kVSEnd = 0xFE0F; const uint32_t kIVSStart = 0xE0100; const uint32_t kIVSEnd = 0xE01EF; const uint32_t kUVSUpperLimit = 0xFFFFFF; } // namespace namespace ots { // Parses Format 4 tables bool OpenTypeCMAP::ParseFormat4(int platform, int encoding, const uint8_t *data, size_t length, uint16_t num_glyphs) { ots::Buffer subtable(data, length); // 0.3.4, 3.0.4 or 3.1.4 subtables are complex and, rather than expanding the // whole thing and recompacting it, we validate it and include it verbatim // in the output. OpenTypeOS2 *os2 = static_cast( GetFont()->GetTypedTable(OTS_TAG_OS2)); if (!os2) { return Error("Required OS/2 table missing"); } if (!subtable.Skip(4)) { return Error("Can't read 4 bytes at start of cmap format 4 subtable"); } uint16_t language = 0; if (!subtable.ReadU16(&language)) { return Error("Can't read language"); } if (language) { // Platform ID 3 (windows) subtables should have language '0'. return Error("Languages should be 0 (%d)", language); } uint16_t segcountx2, search_range, entry_selector, range_shift; segcountx2 = search_range = entry_selector = range_shift = 0; if (!subtable.ReadU16(&segcountx2) || !subtable.ReadU16(&search_range) || !subtable.ReadU16(&entry_selector) || !subtable.ReadU16(&range_shift)) { return Error("Failed to read subcmap structure"); } if (segcountx2 & 1 || search_range & 1) { return Error("Bad subcmap structure"); } const uint16_t segcount = segcountx2 >> 1; // There must be at least one segment according the spec. if (segcount < 1) { return Error("Segcount < 1 (%d)", segcount); } // log2segcount is the maximal x s.t. 2^x < segcount unsigned log2segcount = 0; while (1u << (log2segcount + 1) <= segcount) { log2segcount++; } const uint16_t expected_search_range = 2 * 1u << log2segcount; if (expected_search_range != search_range) { return Error("expected search range != search range (%d != %d)", expected_search_range, search_range); } if (entry_selector != log2segcount) { return Error("entry selector != log2(segement count) (%d != %d)", entry_selector, log2segcount); } const uint16_t expected_range_shift = segcountx2 - search_range; if (range_shift != expected_range_shift) { return Error("unexpected range shift (%d != %d)", range_shift, expected_range_shift); } std::vector ranges(segcount); for (unsigned i = 0; i < segcount; ++i) { if (!subtable.ReadU16(&ranges[i].end_range)) { return Error("Failed to read segment %d", i); } } uint16_t padding; if (!subtable.ReadU16(&padding)) { return Error("Failed to read cmap subtable segment padding"); } if (padding) { return Error("Non zero cmap subtable segment padding (%d)", padding); } for (unsigned i = 0; i < segcount; ++i) { if (!subtable.ReadU16(&ranges[i].start_range)) { return Error("Failed to read segment start range %d", i); } } for (unsigned i = 0; i < segcount; ++i) { if (!subtable.ReadS16(&ranges[i].id_delta)) { return Error("Failed to read segment delta %d", i); } } for (unsigned i = 0; i < segcount; ++i) { ranges[i].id_range_offset_offset = subtable.offset(); if (!subtable.ReadU16(&ranges[i].id_range_offset)) { return Error("Failed to read segment range offset %d", i); } if (ranges[i].id_range_offset & 1) { // Some font generators seem to put 65535 on id_range_offset // for 0xFFFF-0xFFFF range. // (e.g., many fonts in http://www.princexml.com/fonts/) if (i == segcount - 1u) { Warning("bad id_range_offset"); ranges[i].id_range_offset = 0; // The id_range_offset value in the transcoded font will not change // since this table is not actually "transcoded" yet. } else { return Error("Bad segment offset (%d)", ranges[i].id_range_offset); } } } // ranges must be ascending order, based on the end_code. Ranges may not // overlap. for (unsigned i = 1; i < segcount; ++i) { if ((i == segcount - 1u) && (ranges[i - 1].start_range == 0xffff) && (ranges[i - 1].end_range == 0xffff) && (ranges[i].start_range == 0xffff) && (ranges[i].end_range == 0xffff)) { // Some fonts (e.g., Germania.ttf) have multiple 0xffff terminators. // We'll accept them as an exception. Warning("multiple 0xffff terminators found"); continue; } // Note: some Linux fonts (e.g., LucidaSansOblique.ttf, bsmi00lp.ttf) have // unsorted table... if (ranges[i].end_range <= ranges[i - 1].end_range) { return Error("Out of order end range (%d <= %d)", ranges[i].end_range, ranges[i-1].end_range); } if (ranges[i].start_range <= ranges[i - 1].end_range) { return Error("out of order start range (%d <= %d)", ranges[i].start_range, ranges[i-1].end_range); } // On many fonts, the value of {first, last}_char_index are incorrect. // Fix them. if (os2->table.first_char_index != 0xFFFF && ranges[i].start_range != 0xFFFF && os2->table.first_char_index > ranges[i].start_range) { os2->table.first_char_index = ranges[i].start_range; } if (os2->table.last_char_index != 0xFFFF && ranges[i].end_range != 0xFFFF && os2->table.last_char_index < ranges[i].end_range) { os2->table.last_char_index = ranges[i].end_range; } } // The last range must end at 0xffff if (ranges[segcount - 1].start_range != 0xffff || ranges[segcount - 1].end_range != 0xffff) { return Error("Final segment start and end must be 0xFFFF (0x%04X-0x%04X)", ranges[segcount - 1].start_range, ranges[segcount - 1].end_range); } // A format 4 CMAP subtable is complex. To be safe we simulate a lookup of // each code-point defined in the table and make sure that they are all valid // glyphs and that we don't access anything out-of-bounds. for (unsigned i = 0; i < segcount; ++i) { for (unsigned cp = ranges[i].start_range; cp <= ranges[i].end_range; ++cp) { const uint16_t code_point = static_cast(cp); if (ranges[i].id_range_offset == 0) { // this is explictly allowed to overflow in the spec const uint16_t glyph = code_point + ranges[i].id_delta; if (glyph >= num_glyphs) { return Error("Range glyph reference too high (%d > %d)", glyph, num_glyphs - 1); } } else { const uint16_t range_delta = code_point - ranges[i].start_range; // this might seem odd, but it's true. The offset is relative to the // location of the offset value itself. const uint32_t glyph_id_offset = ranges[i].id_range_offset_offset + ranges[i].id_range_offset + range_delta * 2; // We need to be able to access a 16-bit value from this offset if (glyph_id_offset + 1 >= length) { return Error("bad glyph id offset (%d > %ld)", glyph_id_offset, length); } uint16_t glyph; std::memcpy(&glyph, data + glyph_id_offset, 2); glyph = ots_ntohs(glyph); if (glyph >= num_glyphs) { return Error("Range glyph reference too high (%d > %d)", glyph, num_glyphs - 1); } } } } // We accept the table. // TODO(yusukes): transcode the subtable. if (platform == 3 && encoding == 0) { this->subtable_3_0_4_data = data; this->subtable_3_0_4_length = length; } else if (platform == 3 && encoding == 1) { this->subtable_3_1_4_data = data; this->subtable_3_1_4_length = length; } else if (platform == 0 && encoding == 3) { this->subtable_0_3_4_data = data; this->subtable_0_3_4_length = length; } else { return Error("Unknown cmap subtable type (platform=%d, encoding=%d)", platform, encoding); } return true; } bool OpenTypeCMAP::Parse31012(const uint8_t *data, size_t length, uint16_t num_glyphs) { ots::Buffer subtable(data, length); // Format 12 tables are simple. We parse these and fully serialise them // later. if (!subtable.Skip(8)) { return Error("failed to skip the first 8 bytes of format 12 subtable"); } uint32_t language = 0; if (!subtable.ReadU32(&language)) { return Error("can't read format 12 subtable language"); } if (language) { return Error("format 12 subtable language should be zero (%d)", language); } uint32_t num_groups = 0; if (!subtable.ReadU32(&num_groups)) { return Error("can't read number of format 12 subtable groups"); } if (num_groups == 0 || subtable.remaining() / 12 < num_groups) { return Error("Bad format 12 subtable group count %d", num_groups); } std::vector &groups = this->subtable_3_10_12; groups.resize(num_groups); for (unsigned i = 0; i < num_groups; ++i) { if (!subtable.ReadU32(&groups[i].start_range) || !subtable.ReadU32(&groups[i].end_range) || !subtable.ReadU32(&groups[i].start_glyph_id)) { return Error("can't read format 12 subtable group"); } if (groups[i].start_range > kUnicodeUpperLimit || groups[i].end_range > kUnicodeUpperLimit || groups[i].start_glyph_id > 0xFFFF) { return Error("bad format 12 subtable group (startCharCode=0x%4X, endCharCode=0x%4X, startGlyphID=%d)", groups[i].start_range, groups[i].end_range, groups[i].start_glyph_id); } // We assert that the glyph value is within range. Because of the range // limits, above, we don't need to worry about overflow. if (groups[i].end_range < groups[i].start_range) { return Error("format 12 subtable group endCharCode before startCharCode (0x%4X < 0x%4X)", groups[i].end_range, groups[i].start_range); } if ((groups[i].end_range - groups[i].start_range) + groups[i].start_glyph_id > num_glyphs) { return Error("bad format 12 subtable group startGlyphID (%d)", groups[i].start_glyph_id); } } // the groups must be sorted by start code and may not overlap for (unsigned i = 1; i < num_groups; ++i) { if (groups[i].start_range <= groups[i - 1].start_range) { return Error("out of order format 12 subtable group (startCharCode=0x%4X <= startCharCode=0x%4X of previous group)", groups[i].start_range, groups[i-1].start_range); } if (groups[i].start_range <= groups[i - 1].end_range) { return Error("overlapping format 12 subtable groups (startCharCode=0x%4X <= endCharCode=0x%4X of previous group)", groups[i].start_range, groups[i-1].end_range); } } return true; } bool OpenTypeCMAP::Parse31013(const uint8_t *data, size_t length, uint16_t num_glyphs) { ots::Buffer subtable(data, length); // Format 13 tables are simple. We parse these and fully serialise them // later. if (!subtable.Skip(8)) { return Error("Bad cmap subtable length"); } uint32_t language = 0; if (!subtable.ReadU32(&language)) { return Error("Can't read cmap subtable language"); } if (language) { return Error("Cmap subtable language should be zero but is %d", language); } uint32_t num_groups = 0; if (!subtable.ReadU32(&num_groups)) { return Error("Can't read number of groups in a cmap subtable"); } // We limit the number of groups in the same way as in 3.10.12 tables. See // the comment there in if (num_groups == 0 || subtable.remaining() / 12 < num_groups) { return Error("Bad format 13 subtable group count %d", num_groups); } std::vector &groups = this->subtable_3_10_13; groups.resize(num_groups); for (unsigned i = 0; i < num_groups; ++i) { if (!subtable.ReadU32(&groups[i].start_range) || !subtable.ReadU32(&groups[i].end_range) || !subtable.ReadU32(&groups[i].start_glyph_id)) { return Error("Can't read subrange structure in a cmap subtable"); } // We conservatively limit all of the values to protect some parsers from // overflows if (groups[i].start_range > kUnicodeUpperLimit || groups[i].end_range > kUnicodeUpperLimit || groups[i].start_glyph_id > 0xFFFF) { return Error("Bad subrange with start_range=%d, end_range=%d, start_glyph_id=%d", groups[i].start_range, groups[i].end_range, groups[i].start_glyph_id); } if (groups[i].start_glyph_id >= num_glyphs) { return Error("Subrange starting glyph id too high (%d > %d)", groups[i].start_glyph_id, num_glyphs); } } // the groups must be sorted by start code and may not overlap for (unsigned i = 1; i < num_groups; ++i) { if (groups[i].start_range <= groups[i - 1].start_range) { return Error("Overlapping subrange starts (%d >= %d)", groups[i]. start_range, groups[i-1].start_range); } if (groups[i].start_range <= groups[i - 1].end_range) { return Error("Overlapping subranges (%d <= %d)", groups[i].start_range, groups[i-1].end_range); } } return true; } bool OpenTypeCMAP::Parse0514(const uint8_t *data, size_t length, uint16_t num_glyphs) { // Unicode Variation Selector table ots::Buffer subtable(data, length); // Format 14 tables are simple. We parse these and fully serialise them // later. // Skip format (USHORT) and length (ULONG) if (!subtable.Skip(6)) { return Error("Can't read start of cmap subtable"); } uint32_t num_records = 0; if (!subtable.ReadU32(&num_records)) { return Error("Can't read number of records in cmap subtable"); } if (num_records == 0 || num_records > kMaxCMAPSelectorRecords) { return Error("Bad format 14 subtable records count %d", num_records); } std::vector& records = this->subtable_0_5_14; records.resize(num_records); for (unsigned i = 0; i < num_records; ++i) { if (!subtable.ReadU24(&records[i].var_selector) || !subtable.ReadU32(&records[i].default_offset) || !subtable.ReadU32(&records[i].non_default_offset)) { return Error("Can't read record structure of record %d in cmap subtale", i); } // Checks the value of variation selector if (!((records[i].var_selector >= kMongolianVSStart && records[i].var_selector <= kMongolianVSEnd) || (records[i].var_selector >= kVSStart && records[i].var_selector <= kVSEnd) || (records[i].var_selector >= kIVSStart && records[i].var_selector <= kIVSEnd))) { return Error("Bad record variation selector (%04X) in record %i", records[i].var_selector, i); } if (i > 0 && records[i-1].var_selector >= records[i].var_selector) { return Error("Out of order variation selector (%04X >= %04X) in record %d", records[i-1].var_selector, records[i].var_selector, i); } // Checks offsets if (!records[i].default_offset && !records[i].non_default_offset) { return Error("No default aoffset in variation selector record %d", i); } if (records[i].default_offset && records[i].default_offset >= length) { return Error("Default offset too high (%d >= %ld) in record %d", records[i].default_offset, length, i); } if (records[i].non_default_offset && records[i].non_default_offset >= length) { return Error("Non default offset too high (%d >= %ld) in record %d", records[i].non_default_offset, length, i); } } for (unsigned i = 0; i < num_records; ++i) { // Checks default UVS table if (records[i].default_offset) { subtable.set_offset(records[i].default_offset); uint32_t num_ranges = 0; if (!subtable.ReadU32(&num_ranges)) { return Error("Can't read number of ranges in record %d", i); } if (num_ranges == 0 || subtable.remaining() / 4 < num_ranges) { return Error("Bad number of ranges (%d) in record %d", num_ranges, i); } uint32_t last_unicode_value = 0; std::vector& ranges = records[i].ranges; ranges.resize(num_ranges); for (unsigned j = 0; j < num_ranges; ++j) { if (!subtable.ReadU24(&ranges[j].unicode_value) || !subtable.ReadU8(&ranges[j].additional_count)) { return Error("Can't read range info in variation selector record %d", i); } const uint32_t check_value = ranges[j].unicode_value + ranges[j].additional_count; if (ranges[j].unicode_value == 0 || ranges[j].unicode_value > kUnicodeUpperLimit || check_value > kUVSUpperLimit || (last_unicode_value && ranges[j].unicode_value <= last_unicode_value)) { return Error("Bad Unicode value *%04X) in variation selector range %d record %d", ranges[j].unicode_value, j, i); } last_unicode_value = check_value; } } // Checks non default UVS table if (records[i].non_default_offset) { subtable.set_offset(records[i].non_default_offset); uint32_t num_mappings = 0; if (!subtable.ReadU32(&num_mappings)) { return Error("Can't read number of mappings in variation selector record %d", i); } if (num_mappings == 0 || subtable.remaining() / 5 < num_mappings) { return Error("Bad number of mappings (%d) in variation selector record %d", num_mappings, i); } uint32_t last_unicode_value = 0; std::vector& mappings = records[i].mappings; mappings.resize(num_mappings); for (unsigned j = 0; j < num_mappings; ++j) { if (!subtable.ReadU24(&mappings[j].unicode_value) || !subtable.ReadU16(&mappings[j].glyph_id)) { return Error("Can't read mapping %d in variation selector record %d", j, i); } if (mappings[j].glyph_id == 0 || mappings[j].unicode_value == 0 || mappings[j].unicode_value > kUnicodeUpperLimit || (last_unicode_value && mappings[j].unicode_value <= last_unicode_value)) { return Error("Bad mapping (%04X -> %d) in mapping %d of variation selector %d", mappings[j].unicode_value, mappings[j].glyph_id, j, i); } last_unicode_value = mappings[j].unicode_value; } } } if (subtable.offset() != length) { return Error("Bad subtable offset (%ld != %ld)", subtable.offset(), length); } this->subtable_0_5_14_length = subtable.offset(); return true; } bool OpenTypeCMAP::Parse100(const uint8_t *data, size_t length) { // Mac Roman table ots::Buffer subtable(data, length); if (!subtable.Skip(4)) { return Error("Bad cmap subtable"); } uint16_t language = 0; if (!subtable.ReadU16(&language)) { return Error("Can't read language in cmap subtable"); } if (language) { // simsun.ttf has non-zero language id. Warning("language id should be zero: %u", language); } this->subtable_1_0_0.reserve(kFormat0ArraySize); for (size_t i = 0; i < kFormat0ArraySize; ++i) { uint8_t glyph_id = 0; if (!subtable.ReadU8(&glyph_id)) { return Error("Can't read glyph id at array[%ld] in cmap subtable", i); } this->subtable_1_0_0.push_back(glyph_id); } return true; } bool OpenTypeCMAP::Parse(const uint8_t *data, size_t length) { Buffer table(data, length); uint16_t version = 0; uint16_t num_tables = 0; if (!table.ReadU16(&version) || !table.ReadU16(&num_tables)) { return Error("Can't read structure of cmap"); } if (version != 0) { return Error("Non zero cmap version (%d)", version); } if (!num_tables) { return Error("No subtables in cmap!"); } std::vector subtable_headers; // read the subtable headers subtable_headers.reserve(num_tables); for (unsigned i = 0; i < num_tables; ++i) { CMAPSubtableHeader subt; if (!table.ReadU16(&subt.platform) || !table.ReadU16(&subt.encoding) || !table.ReadU32(&subt.offset)) { return Error("Can't read subtable information cmap subtable %d", i); } subtable_headers.push_back(subt); } const size_t data_offset = table.offset(); // make sure that all the offsets are valid. for (unsigned i = 0; i < num_tables; ++i) { if (subtable_headers[i].offset > 1024 * 1024 * 1024) { return Error("Bad subtable offset in cmap subtable %d", i); } if (subtable_headers[i].offset < data_offset || subtable_headers[i].offset >= length) { return Error("Bad subtable offset (%d) in cmap subtable %d", subtable_headers[i].offset, i); } } // the format of the table is the first couple of bytes in the table. The // length of the table is stored in a format-specific way. for (unsigned i = 0; i < num_tables; ++i) { table.set_offset(subtable_headers[i].offset); if (!table.ReadU16(&subtable_headers[i].format)) { return Error("Can't read cmap subtable header format %d", i); } uint16_t len = 0; uint16_t lang = 0; switch (subtable_headers[i].format) { case 0: case 4: if (!table.ReadU16(&len)) { return Error("Can't read cmap subtable %d length", i); } if (!table.ReadU16(&lang)) { return Error("Can't read cmap subtable %d language", i); } subtable_headers[i].length = len; subtable_headers[i].language = lang; break; case 12: case 13: if (!table.Skip(2)) { return Error("Bad cmap subtable %d structure", i); } if (!table.ReadU32(&subtable_headers[i].length)) { return Error("Can read cmap subtable %d length", i); } if (!table.ReadU32(&subtable_headers[i].language)) { return Error("Can't read cmap subtable %d language", i); } break; case 14: if (!table.ReadU32(&subtable_headers[i].length)) { return Error("Can't read cmap subtable %d length", i); } subtable_headers[i].language = 0; break; default: subtable_headers[i].length = 0; subtable_headers[i].language = 0; break; } } // check if the table is sorted first by platform ID, then by encoding ID. for (unsigned i = 1; i < num_tables; ++i) { if (subtable_headers[i - 1].platform > subtable_headers[i].platform || (subtable_headers[i - 1].platform == subtable_headers[i].platform && (subtable_headers[i - 1].encoding > subtable_headers[i].encoding || (subtable_headers[i - 1].encoding == subtable_headers[i].encoding && subtable_headers[i - 1].language > subtable_headers[i].language)))) Warning("subtable %d with platform ID %d, encoding ID %d, language ID %d " "following subtable with platform ID %d, encoding ID %d, language ID %d", i, subtable_headers[i].platform, subtable_headers[i].encoding, subtable_headers[i].language, subtable_headers[i - 1].platform, subtable_headers[i - 1].encoding, subtable_headers[i - 1].language); } // Now, verify that all the lengths are sane for (unsigned i = 0; i < num_tables; ++i) { if (!subtable_headers[i].length) continue; if (subtable_headers[i].length > 1024 * 1024 * 1024) { return Error("Bad cmap subtable %d length", i); } // We know that both the offset and length are < 1GB, so the following // addition doesn't overflow const uint32_t end_byte = subtable_headers[i].offset + subtable_headers[i].length; if (end_byte > length) { return Error("Over long cmap subtable %d @ %d for %d", i, subtable_headers[i].offset, subtable_headers[i].length); } } // check that the cmap subtables are not overlapping. std::set > uniq_checker; std::vector > overlap_checker; for (unsigned i = 0; i < num_tables; ++i) { const uint32_t end_byte = subtable_headers[i].offset + subtable_headers[i].length; if (!uniq_checker.insert(std::make_pair(subtable_headers[i].offset, end_byte)).second) { // Sometimes Unicode table and MS table share exactly the same data. // We'll allow this. continue; } overlap_checker.push_back( std::make_pair(subtable_headers[i].offset, static_cast(1) /* start */)); overlap_checker.push_back( std::make_pair(end_byte, static_cast(0) /* end */)); } std::sort(overlap_checker.begin(), overlap_checker.end()); int overlap_count = 0; for (unsigned i = 0; i < overlap_checker.size(); ++i) { overlap_count += (overlap_checker[i].second ? 1 : -1); if (overlap_count > 1) { return Error("Excessive overlap count %d", overlap_count); } } // we grab the number of glyphs in the file from the maxp table to make sure // that the character map isn't referencing anything beyound this range. OpenTypeMAXP *maxp = static_cast( GetFont()->GetTypedTable(OTS_TAG_MAXP)); if (!maxp) { return Error("No maxp table in font! Needed by cmap."); } const uint16_t num_glyphs = maxp->num_glyphs; // We only support a subset of the possible character map tables. Microsoft // 'strongly recommends' that everyone supports the Unicode BMP table with // the UCS-4 table for non-BMP glyphs. We'll pass the following subtables: // Platform ID Encoding ID Format // 0 0 4 (Unicode Default) // 0 1 4 (Unicode 1.1) // 0 3 4 (Unicode BMP) // 0 3 12 (Unicode UCS-4) // 0 5 14 (Unicode Variation Sequences) // 1 0 0 (Mac Roman) // 3 0 4 (MS Symbol) // 3 1 4 (MS Unicode BMP) // 3 10 12 (MS Unicode UCS-4) // 3 10 13 (MS UCS-4 Fallback mapping) // // Note: // * 0-0-4 and 0-1-4 tables are (usually) written as a 3-1-4 table. If 3-1-4 table // also exists, the 0-0-4 or 0-1-4 tables are ignored. // * Unlike 0-0-4 table, 0-3-4 table is written as a 0-3-4 table. // Some fonts which include 0-5-14 table seems to be required 0-3-4 // table. The 0-3-4 table will be wriiten even if 3-1-4 table also exists. // * 0-3-12 table is written as a 3-10-12 table. If 3-10-12 table also // exists, the 0-3-12 table is ignored. // for (unsigned i = 0; i < num_tables; ++i) { if (subtable_headers[i].platform == 0) { // Unicode platform if ((subtable_headers[i].encoding == 0 || subtable_headers[i].encoding == 1) && (subtable_headers[i].format == 4)) { // parse and output the 0-0-4 and 0-1-4 tables as 3-1-4 table. Sometimes the 0-0-4 // table actually points to MS symbol data and thus should be parsed as // 3-0-4 table (e.g., marqueem.ttf and quixotic.ttf). This error will be // recovered in ots_cmap_serialise(). if (!ParseFormat4(3, 1, data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return Error("Failed to parse format 4 cmap subtable %d", i); } } else if ((subtable_headers[i].encoding == 3) && (subtable_headers[i].format == 4)) { // parse and output the 0-3-4 table as 0-3-4 table. if (!ParseFormat4(0, 3, data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return Error("Failed to parse format 4 cmap subtable %d", i); } } else if ((subtable_headers[i].encoding == 3 || subtable_headers[i].encoding == 4) && (subtable_headers[i].format == 12)) { // parse and output the 0-3-12 or 0-4-12 tables as 3-10-12 table. if (!Parse31012(data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return Error("Failed to parse format 12 cmap subtable %d", i); } } else if ((subtable_headers[i].encoding == 5) && (subtable_headers[i].format == 14)) { if (!Parse0514(data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return Error("Failed to parse format 14 cmap subtable %d", i); } } } else if (subtable_headers[i].platform == 1) { // Mac platform if ((subtable_headers[i].encoding == 0) && (subtable_headers[i].format == 0)) { // parse and output the 1-0-0 table. if (!Parse100(data + subtable_headers[i].offset, subtable_headers[i].length)) { return OTS_FAILURE(); } } } else if (subtable_headers[i].platform == 3) { // MS platform switch (subtable_headers[i].encoding) { case 0: case 1: if (subtable_headers[i].format == 4) { // parse 3-0-4 or 3-1-4 table. if (!ParseFormat4(subtable_headers[i].platform, subtable_headers[i].encoding, data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return OTS_FAILURE(); } } break; case 10: if (subtable_headers[i].format == 12) { this->subtable_3_10_12.clear(); if (!Parse31012(data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return OTS_FAILURE(); } } else if (subtable_headers[i].format == 13) { this->subtable_3_10_13.clear(); if (!Parse31013(data + subtable_headers[i].offset, subtable_headers[i].length, num_glyphs)) { return OTS_FAILURE(); } } break; } } } return true; } bool OpenTypeCMAP::Serialize(OTSStream *out) { const bool have_034 = this->subtable_0_3_4_data != NULL; const bool have_0514 = this->subtable_0_5_14.size() != 0; const bool have_100 = this->subtable_1_0_0.size() != 0; const bool have_304 = this->subtable_3_0_4_data != NULL; // MS Symbol and MS Unicode tables should not co-exist. // See the comment above in 0-0-4 parser. const bool have_314 = (!have_304) && this->subtable_3_1_4_data; const bool have_31012 = this->subtable_3_10_12.size() != 0; const bool have_31013 = this->subtable_3_10_13.size() != 0; const uint16_t num_subtables = static_cast(have_034) + static_cast(have_0514) + static_cast(have_100) + static_cast(have_304) + static_cast(have_314) + static_cast(have_31012) + static_cast(have_31013); const off_t table_start = out->Tell(); // Some fonts don't have 3-0-4 MS Symbol nor 3-1-4 Unicode BMP tables // (e.g., old fonts for Mac). We don't support them. if (!have_304 && !have_314 && !have_034 && !have_31012 && !have_31013) { return Error("no supported subtables were found"); } if (!out->WriteU16(0) || !out->WriteU16(num_subtables)) { return OTS_FAILURE(); } const off_t record_offset = out->Tell(); if (!out->Pad(num_subtables * 8)) { return OTS_FAILURE(); } const off_t offset_034 = out->Tell(); if (have_034) { if (!out->Write(this->subtable_0_3_4_data, this->subtable_0_3_4_length)) { return OTS_FAILURE(); } } const off_t offset_0514 = out->Tell(); if (have_0514) { const std::vector &records = this->subtable_0_5_14; const unsigned num_records = records.size(); if (!out->WriteU16(14) || !out->WriteU32(this->subtable_0_5_14_length) || !out->WriteU32(num_records)) { return OTS_FAILURE(); } for (unsigned i = 0; i < num_records; ++i) { if (!out->WriteU24(records[i].var_selector) || !out->WriteU32(records[i].default_offset) || !out->WriteU32(records[i].non_default_offset)) { return OTS_FAILURE(); } } for (unsigned i = 0; i < num_records; ++i) { if (records[i].default_offset) { const std::vector &ranges = records[i].ranges; const unsigned num_ranges = ranges.size(); if (!out->Seek(records[i].default_offset + offset_0514) || !out->WriteU32(num_ranges)) { return OTS_FAILURE(); } for (unsigned j = 0; j < num_ranges; ++j) { if (!out->WriteU24(ranges[j].unicode_value) || !out->WriteU8(ranges[j].additional_count)) { return OTS_FAILURE(); } } } if (records[i].non_default_offset) { const std::vector &mappings = records[i].mappings; const unsigned num_mappings = mappings.size(); if (!out->Seek(records[i].non_default_offset + offset_0514) || !out->WriteU32(num_mappings)) { return OTS_FAILURE(); } for (unsigned j = 0; j < num_mappings; ++j) { if (!out->WriteU24(mappings[j].unicode_value) || !out->WriteU16(mappings[j].glyph_id)) { return OTS_FAILURE(); } } } } } const off_t offset_100 = out->Tell(); if (have_100) { if (!out->WriteU16(0) || // format !out->WriteU16(6 + kFormat0ArraySize) || // length !out->WriteU16(0)) { // language return OTS_FAILURE(); } if (!out->Write(&(this->subtable_1_0_0[0]), kFormat0ArraySize)) { return OTS_FAILURE(); } } const off_t offset_304 = out->Tell(); if (have_304) { if (!out->Write(this->subtable_3_0_4_data, this->subtable_3_0_4_length)) { return OTS_FAILURE(); } } const off_t offset_314 = out->Tell(); if (have_314) { if (!out->Write(this->subtable_3_1_4_data, this->subtable_3_1_4_length)) { return OTS_FAILURE(); } } const off_t offset_31012 = out->Tell(); if (have_31012) { std::vector &groups = this->subtable_3_10_12; const unsigned num_groups = groups.size(); if (!out->WriteU16(12) || !out->WriteU16(0) || !out->WriteU32(num_groups * 12 + 16) || !out->WriteU32(0) || !out->WriteU32(num_groups)) { return OTS_FAILURE(); } for (unsigned i = 0; i < num_groups; ++i) { if (!out->WriteU32(groups[i].start_range) || !out->WriteU32(groups[i].end_range) || !out->WriteU32(groups[i].start_glyph_id)) { return OTS_FAILURE(); } } } const off_t offset_31013 = out->Tell(); if (have_31013) { std::vector &groups = this->subtable_3_10_13; const unsigned num_groups = groups.size(); if (!out->WriteU16(13) || !out->WriteU16(0) || !out->WriteU32(num_groups * 12 + 16) || !out->WriteU32(0) || !out->WriteU32(num_groups)) { return OTS_FAILURE(); } for (unsigned i = 0; i < num_groups; ++i) { if (!out->WriteU32(groups[i].start_range) || !out->WriteU32(groups[i].end_range) || !out->WriteU32(groups[i].start_glyph_id)) { return OTS_FAILURE(); } } } const off_t table_end = out->Tell(); // Now seek back and write the table of offsets if (!out->Seek(record_offset)) { return OTS_FAILURE(); } if (have_034) { if (!out->WriteU16(0) || !out->WriteU16(3) || !out->WriteU32(offset_034 - table_start)) { return OTS_FAILURE(); } } if (have_0514) { if (!out->WriteU16(0) || !out->WriteU16(5) || !out->WriteU32(offset_0514 - table_start)) { return OTS_FAILURE(); } } if (have_100) { if (!out->WriteU16(1) || !out->WriteU16(0) || !out->WriteU32(offset_100 - table_start)) { return OTS_FAILURE(); } } if (have_304) { if (!out->WriteU16(3) || !out->WriteU16(0) || !out->WriteU32(offset_304 - table_start)) { return OTS_FAILURE(); } } if (have_314) { if (!out->WriteU16(3) || !out->WriteU16(1) || !out->WriteU32(offset_314 - table_start)) { return OTS_FAILURE(); } } if (have_31012) { if (!out->WriteU16(3) || !out->WriteU16(10) || !out->WriteU32(offset_31012 - table_start)) { return OTS_FAILURE(); } } if (have_31013) { if (!out->WriteU16(3) || !out->WriteU16(10) || !out->WriteU32(offset_31013 - table_start)) { return OTS_FAILURE(); } } if (!out->Seek(table_end)) { return OTS_FAILURE(); } return true; } } // namespace ots