/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsMathMLmencloseFrame.h" #include "gfx2DGlue.h" #include "gfxUtils.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/PathHelpers.h" #include "nsPresContext.h" #include "nsRenderingContext.h" #include "nsWhitespaceTokenizer.h" #include "nsDisplayList.h" #include "gfxContext.h" #include "nsMathMLChar.h" #include using namespace mozilla; using namespace mozilla::gfx; // // -- enclose content with a stretching symbol such // as a long division sign. - implementation // longdiv: // Unicode 5.1 assigns U+27CC to LONG DIVISION, but a right parenthesis // renders better with current font support. static const char16_t kLongDivChar = ')'; // radical: 'SQUARE ROOT' static const char16_t kRadicalChar = 0x221A; // updiagonalstrike static const uint8_t kArrowHeadSize = 10; // phasorangle static const uint8_t kPhasorangleWidth = 8; nsIFrame* NS_NewMathMLmencloseFrame(nsIPresShell* aPresShell, nsStyleContext* aContext) { return new (aPresShell) nsMathMLmencloseFrame(aContext); } NS_IMPL_FRAMEARENA_HELPERS(nsMathMLmencloseFrame) nsMathMLmencloseFrame::nsMathMLmencloseFrame(nsStyleContext* aContext) : nsMathMLContainerFrame(aContext), mNotationsToDraw(0), mLongDivCharIndex(-1), mRadicalCharIndex(-1), mContentWidth(0) { } nsMathMLmencloseFrame::~nsMathMLmencloseFrame() { } nsresult nsMathMLmencloseFrame::AllocateMathMLChar(nsMencloseNotation mask) { // Is the char already allocated? if ((mask == NOTATION_LONGDIV && mLongDivCharIndex >= 0) || (mask == NOTATION_RADICAL && mRadicalCharIndex >= 0)) return NS_OK; // No need to track the style context given to our MathML chars. // The Style System will use Get/SetAdditionalStyleContext() to keep it // up-to-date if dynamic changes arise. uint32_t i = mMathMLChar.Length(); nsAutoString Char; if (!mMathMLChar.AppendElement()) return NS_ERROR_OUT_OF_MEMORY; if (mask == NOTATION_LONGDIV) { Char.Assign(kLongDivChar); mLongDivCharIndex = i; } else if (mask == NOTATION_RADICAL) { Char.Assign(kRadicalChar); mRadicalCharIndex = i; } nsPresContext *presContext = PresContext(); mMathMLChar[i].SetData(Char); ResolveMathMLCharStyle(presContext, mContent, mStyleContext, &mMathMLChar[i]); return NS_OK; } /* * Add a notation to draw, if the argument is the name of a known notation. * @param aNotation string name of a notation */ nsresult nsMathMLmencloseFrame::AddNotation(const nsAString& aNotation) { nsresult rv; if (aNotation.EqualsLiteral("longdiv")) { rv = AllocateMathMLChar(NOTATION_LONGDIV); NS_ENSURE_SUCCESS(rv, rv); mNotationsToDraw |= NOTATION_LONGDIV; } else if (aNotation.EqualsLiteral("actuarial")) { mNotationsToDraw |= (NOTATION_RIGHT | NOTATION_TOP); } else if (aNotation.EqualsLiteral("radical")) { rv = AllocateMathMLChar(NOTATION_RADICAL); NS_ENSURE_SUCCESS(rv, rv); mNotationsToDraw |= NOTATION_RADICAL; } else if (aNotation.EqualsLiteral("box")) { mNotationsToDraw |= (NOTATION_LEFT | NOTATION_RIGHT | NOTATION_TOP | NOTATION_BOTTOM); } else if (aNotation.EqualsLiteral("roundedbox")) { mNotationsToDraw |= NOTATION_ROUNDEDBOX; } else if (aNotation.EqualsLiteral("circle")) { mNotationsToDraw |= NOTATION_CIRCLE; } else if (aNotation.EqualsLiteral("left")) { mNotationsToDraw |= NOTATION_LEFT; } else if (aNotation.EqualsLiteral("right")) { mNotationsToDraw |= NOTATION_RIGHT; } else if (aNotation.EqualsLiteral("top")) { mNotationsToDraw |= NOTATION_TOP; } else if (aNotation.EqualsLiteral("bottom")) { mNotationsToDraw |= NOTATION_BOTTOM; } else if (aNotation.EqualsLiteral("updiagonalstrike")) { mNotationsToDraw |= NOTATION_UPDIAGONALSTRIKE; } else if (aNotation.EqualsLiteral("updiagonalarrow")) { mNotationsToDraw |= NOTATION_UPDIAGONALARROW; } else if (aNotation.EqualsLiteral("downdiagonalstrike")) { mNotationsToDraw |= NOTATION_DOWNDIAGONALSTRIKE; } else if (aNotation.EqualsLiteral("verticalstrike")) { mNotationsToDraw |= NOTATION_VERTICALSTRIKE; } else if (aNotation.EqualsLiteral("horizontalstrike")) { mNotationsToDraw |= NOTATION_HORIZONTALSTRIKE; } else if (aNotation.EqualsLiteral("madruwb")) { mNotationsToDraw |= (NOTATION_RIGHT | NOTATION_BOTTOM); } else if (aNotation.EqualsLiteral("phasorangle")) { mNotationsToDraw |= (NOTATION_BOTTOM | NOTATION_PHASORANGLE); } return NS_OK; } /* * Initialize the list of notations to draw */ void nsMathMLmencloseFrame::InitNotations() { mNotationsToDraw = 0; mLongDivCharIndex = mRadicalCharIndex = -1; mMathMLChar.Clear(); nsAutoString value; if (mContent->GetAttr(kNameSpaceID_None, nsGkAtoms::notation_, value)) { // parse the notation attribute nsWhitespaceTokenizer tokenizer(value); while (tokenizer.hasMoreTokens()) AddNotation(tokenizer.nextToken()); if (IsToDraw(NOTATION_UPDIAGONALARROW)) { // For , if // the two notations are drawn then the strike line may cause the point of // the arrow to be too wide. Hence we will only draw the updiagonalarrow // and the arrow shaft may be thought to be the updiagonalstrike. mNotationsToDraw &= ~NOTATION_UPDIAGONALSTRIKE; } } else { // default: longdiv if (NS_FAILED(AllocateMathMLChar(NOTATION_LONGDIV))) return; mNotationsToDraw = NOTATION_LONGDIV; } } NS_IMETHODIMP nsMathMLmencloseFrame::InheritAutomaticData(nsIFrame* aParent) { // let the base class get the default from our parent nsMathMLContainerFrame::InheritAutomaticData(aParent); mPresentationData.flags |= NS_MATHML_STRETCH_ALL_CHILDREN_VERTICALLY; InitNotations(); return NS_OK; } NS_IMETHODIMP nsMathMLmencloseFrame::TransmitAutomaticData() { if (IsToDraw(NOTATION_RADICAL)) { // The TeXBook (Ch 17. p.141) says that \sqrt is cramped UpdatePresentationDataFromChildAt(0, -1, NS_MATHML_COMPRESSED, NS_MATHML_COMPRESSED); } return NS_OK; } void nsMathMLmencloseFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, const nsDisplayListSet& aLists) { ///////////// // paint the menclosed content nsMathMLContainerFrame::BuildDisplayList(aBuilder, aLists); if (NS_MATHML_HAS_ERROR(mPresentationData.flags)) return; nsRect mencloseRect = nsIFrame::GetRect(); mencloseRect.x = mencloseRect.y = 0; if (IsToDraw(NOTATION_RADICAL)) { mMathMLChar[mRadicalCharIndex].Display(aBuilder, this, aLists, 0); nsRect rect; mMathMLChar[mRadicalCharIndex].GetRect(rect); rect.MoveBy(StyleVisibility()->mDirection ? -mContentWidth : rect.width, 0); rect.SizeTo(mContentWidth, mRadicalRuleThickness); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_PHASORANGLE)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_PHASORANGLE); } if (IsToDraw(NOTATION_LONGDIV)) { mMathMLChar[mLongDivCharIndex].Display(aBuilder, this, aLists, 1); nsRect rect; mMathMLChar[mLongDivCharIndex].GetRect(rect); rect.SizeTo(rect.width + mContentWidth, mRuleThickness); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_TOP)) { nsRect rect(0, 0, mencloseRect.width, mRuleThickness); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_BOTTOM)) { nsRect rect(0, mencloseRect.height - mRuleThickness, mencloseRect.width, mRuleThickness); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_LEFT)) { nsRect rect(0, 0, mRuleThickness, mencloseRect.height); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_RIGHT)) { nsRect rect(mencloseRect.width - mRuleThickness, 0, mRuleThickness, mencloseRect.height); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_ROUNDEDBOX)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_ROUNDEDBOX); } if (IsToDraw(NOTATION_CIRCLE)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_CIRCLE); } if (IsToDraw(NOTATION_UPDIAGONALSTRIKE)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_UPDIAGONALSTRIKE); } if (IsToDraw(NOTATION_UPDIAGONALARROW)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_UPDIAGONALARROW); } if (IsToDraw(NOTATION_DOWNDIAGONALSTRIKE)) { DisplayNotation(aBuilder, this, mencloseRect, aLists, mRuleThickness, NOTATION_DOWNDIAGONALSTRIKE); } if (IsToDraw(NOTATION_HORIZONTALSTRIKE)) { nsRect rect(0, mencloseRect.height / 2 - mRuleThickness / 2, mencloseRect.width, mRuleThickness); DisplayBar(aBuilder, this, rect, aLists); } if (IsToDraw(NOTATION_VERTICALSTRIKE)) { nsRect rect(mencloseRect.width / 2 - mRuleThickness / 2, 0, mRuleThickness, mencloseRect.height); DisplayBar(aBuilder, this, rect, aLists); } } /* virtual */ nsresult nsMathMLmencloseFrame::MeasureForWidth(DrawTarget* aDrawTarget, ReflowOutput& aDesiredSize) { return PlaceInternal(aDrawTarget, false, aDesiredSize, true); } /* virtual */ nsresult nsMathMLmencloseFrame::Place(DrawTarget* aDrawTarget, bool aPlaceOrigin, ReflowOutput& aDesiredSize) { return PlaceInternal(aDrawTarget, aPlaceOrigin, aDesiredSize, false); } /* virtual */ nsresult nsMathMLmencloseFrame::PlaceInternal(DrawTarget* aDrawTarget, bool aPlaceOrigin, ReflowOutput& aDesiredSize, bool aWidthOnly) { /////////////// // Measure the size of our content using the base class to format like an // inferred mrow. ReflowOutput baseSize(aDesiredSize.GetWritingMode()); nsresult rv = nsMathMLContainerFrame::Place(aDrawTarget, false, baseSize); if (NS_MATHML_HAS_ERROR(mPresentationData.flags) || NS_FAILED(rv)) { DidReflowChildren(PrincipalChildList().FirstChild()); return rv; } nsBoundingMetrics bmBase = baseSize.mBoundingMetrics; nscoord dx_left = 0, dx_right = 0; nsBoundingMetrics bmLongdivChar, bmRadicalChar; nscoord radicalAscent = 0, radicalDescent = 0; nscoord longdivAscent = 0, longdivDescent = 0; nscoord psi = 0; nscoord leading = 0; /////////////// // Thickness of bars and font metrics nscoord onePixel = nsPresContext::CSSPixelsToAppUnits(1); float fontSizeInflation = nsLayoutUtils::FontSizeInflationFor(this); RefPtr fm = nsLayoutUtils::GetFontMetricsForFrame(this, fontSizeInflation); GetRuleThickness(aDrawTarget, fm, mRuleThickness); if (mRuleThickness < onePixel) { mRuleThickness = onePixel; } char16_t one = '1'; nsBoundingMetrics bmOne = nsLayoutUtils::AppUnitBoundsOfString(&one, 1, *fm, aDrawTarget); /////////////// // General rules: the menclose element takes the size of the enclosed content. // We add a padding when needed. // determine padding & psi nscoord padding = 3 * mRuleThickness; nscoord delta = padding % onePixel; if (delta) padding += onePixel - delta; // round up if (IsToDraw(NOTATION_LONGDIV) || IsToDraw(NOTATION_RADICAL)) { GetRadicalParameters(fm, StyleFont()->mMathDisplay == NS_MATHML_DISPLAYSTYLE_BLOCK, mRadicalRuleThickness, leading, psi); // make sure that the rule appears on on screen if (mRadicalRuleThickness < onePixel) { mRadicalRuleThickness = onePixel; } // adjust clearance psi to get an exact number of pixels -- this // gives a nicer & uniform look on stacked radicals (bug 130282) delta = psi % onePixel; if (delta) { psi += onePixel - delta; // round up } } // Set horizontal parameters if (IsToDraw(NOTATION_ROUNDEDBOX) || IsToDraw(NOTATION_TOP) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_BOTTOM) || IsToDraw(NOTATION_CIRCLE)) dx_left = padding; if (IsToDraw(NOTATION_ROUNDEDBOX) || IsToDraw(NOTATION_TOP) || IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_BOTTOM) || IsToDraw(NOTATION_CIRCLE)) dx_right = padding; // Set vertical parameters if (IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_UPDIAGONALSTRIKE) || IsToDraw(NOTATION_UPDIAGONALARROW) || IsToDraw(NOTATION_DOWNDIAGONALSTRIKE) || IsToDraw(NOTATION_VERTICALSTRIKE) || IsToDraw(NOTATION_CIRCLE) || IsToDraw(NOTATION_ROUNDEDBOX) || IsToDraw(NOTATION_RADICAL) || IsToDraw(NOTATION_LONGDIV) || IsToDraw(NOTATION_PHASORANGLE)) { // set a minimal value for the base height bmBase.ascent = std::max(bmOne.ascent, bmBase.ascent); bmBase.descent = std::max(0, bmBase.descent); } mBoundingMetrics.ascent = bmBase.ascent; mBoundingMetrics.descent = bmBase.descent; if (IsToDraw(NOTATION_ROUNDEDBOX) || IsToDraw(NOTATION_TOP) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_CIRCLE)) mBoundingMetrics.ascent += padding; if (IsToDraw(NOTATION_ROUNDEDBOX) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_BOTTOM) || IsToDraw(NOTATION_CIRCLE)) mBoundingMetrics.descent += padding; /////////////// // phasorangle notation if (IsToDraw(NOTATION_PHASORANGLE)) { nscoord phasorangleWidth = kPhasorangleWidth * mRuleThickness; // Update horizontal parameters dx_left = std::max(dx_left, phasorangleWidth); } /////////////// // updiagonal arrow notation. We need enough space at the top right corner to // draw the arrow head. if (IsToDraw(NOTATION_UPDIAGONALARROW)) { // This is an estimate, see nsDisplayNotation::Paint for the exact head size nscoord arrowHeadSize = kArrowHeadSize * mRuleThickness; // We want that the arrow shaft strikes the menclose content and that the // arrow head does not overlap with that content. Hence we add some space // on the right. We don't add space on the top but only ensure that the // ascent is large enough. dx_right = std::max(dx_right, arrowHeadSize); mBoundingMetrics.ascent = std::max(mBoundingMetrics.ascent, arrowHeadSize); } /////////////// // circle notation: we don't want the ellipse to overlap the enclosed // content. Hence, we need to increase the size of the bounding box by a // factor of at least sqrt(2). if (IsToDraw(NOTATION_CIRCLE)) { double ratio = (sqrt(2.0) - 1.0) / 2.0; nscoord padding2; // Update horizontal parameters padding2 = ratio * bmBase.width; dx_left = std::max(dx_left, padding2); dx_right = std::max(dx_right, padding2); // Update vertical parameters padding2 = ratio * (bmBase.ascent + bmBase.descent); mBoundingMetrics.ascent = std::max(mBoundingMetrics.ascent, bmBase.ascent + padding2); mBoundingMetrics.descent = std::max(mBoundingMetrics.descent, bmBase.descent + padding2); } /////////////// // longdiv notation: if (IsToDraw(NOTATION_LONGDIV)) { if (aWidthOnly) { nscoord longdiv_width = mMathMLChar[mLongDivCharIndex]. GetMaxWidth(PresContext(), aDrawTarget, fontSizeInflation); // Update horizontal parameters dx_left = std::max(dx_left, longdiv_width); } else { // Stretch the parenthesis to the appropriate height if it is not // big enough. nsBoundingMetrics contSize = bmBase; contSize.ascent = mRuleThickness; contSize.descent = bmBase.ascent + bmBase.descent + psi; // height(longdiv) should be >= height(base) + psi + mRuleThickness mMathMLChar[mLongDivCharIndex].Stretch(PresContext(), aDrawTarget, fontSizeInflation, NS_STRETCH_DIRECTION_VERTICAL, contSize, bmLongdivChar, NS_STRETCH_LARGER, false); mMathMLChar[mLongDivCharIndex].GetBoundingMetrics(bmLongdivChar); // Update horizontal parameters dx_left = std::max(dx_left, bmLongdivChar.width); // Update vertical parameters longdivAscent = bmBase.ascent + psi + mRuleThickness; longdivDescent = std::max(bmBase.descent, (bmLongdivChar.ascent + bmLongdivChar.descent - longdivAscent)); mBoundingMetrics.ascent = std::max(mBoundingMetrics.ascent, longdivAscent); mBoundingMetrics.descent = std::max(mBoundingMetrics.descent, longdivDescent); } } /////////////// // radical notation: if (IsToDraw(NOTATION_RADICAL)) { nscoord *dx_leading = StyleVisibility()->mDirection ? &dx_right : &dx_left; if (aWidthOnly) { nscoord radical_width = mMathMLChar[mRadicalCharIndex]. GetMaxWidth(PresContext(), aDrawTarget, fontSizeInflation); // Update horizontal parameters *dx_leading = std::max(*dx_leading, radical_width); } else { // Stretch the radical symbol to the appropriate height if it is not // big enough. nsBoundingMetrics contSize = bmBase; contSize.ascent = mRadicalRuleThickness; contSize.descent = bmBase.ascent + bmBase.descent + psi; // height(radical) should be >= height(base) + psi + mRadicalRuleThickness mMathMLChar[mRadicalCharIndex].Stretch(PresContext(), aDrawTarget, fontSizeInflation, NS_STRETCH_DIRECTION_VERTICAL, contSize, bmRadicalChar, NS_STRETCH_LARGER, StyleVisibility()->mDirection); mMathMLChar[mRadicalCharIndex].GetBoundingMetrics(bmRadicalChar); // Update horizontal parameters *dx_leading = std::max(*dx_leading, bmRadicalChar.width); // Update vertical parameters radicalAscent = bmBase.ascent + psi + mRadicalRuleThickness; radicalDescent = std::max(bmBase.descent, (bmRadicalChar.ascent + bmRadicalChar.descent - radicalAscent)); mBoundingMetrics.ascent = std::max(mBoundingMetrics.ascent, radicalAscent); mBoundingMetrics.descent = std::max(mBoundingMetrics.descent, radicalDescent); } } /////////////// // if (IsToDraw(NOTATION_CIRCLE) || IsToDraw(NOTATION_ROUNDEDBOX) || (IsToDraw(NOTATION_LEFT) && IsToDraw(NOTATION_RIGHT))) { // center the menclose around the content (horizontally) dx_left = dx_right = std::max(dx_left, dx_right); } /////////////// // The maximum size is now computed: set the remaining parameters mBoundingMetrics.width = dx_left + bmBase.width + dx_right; mBoundingMetrics.leftBearing = std::min(0, dx_left + bmBase.leftBearing); mBoundingMetrics.rightBearing = std::max(mBoundingMetrics.width, dx_left + bmBase.rightBearing); aDesiredSize.Width() = mBoundingMetrics.width; aDesiredSize.SetBlockStartAscent(std::max(mBoundingMetrics.ascent, baseSize.BlockStartAscent())); aDesiredSize.Height() = aDesiredSize.BlockStartAscent() + std::max(mBoundingMetrics.descent, baseSize.Height() - baseSize.BlockStartAscent()); if (IsToDraw(NOTATION_LONGDIV) || IsToDraw(NOTATION_RADICAL)) { nscoord desiredSizeAscent = aDesiredSize.BlockStartAscent(); nscoord desiredSizeDescent = aDesiredSize.Height() - aDesiredSize.BlockStartAscent(); if (IsToDraw(NOTATION_LONGDIV)) { desiredSizeAscent = std::max(desiredSizeAscent, longdivAscent + leading); desiredSizeDescent = std::max(desiredSizeDescent, longdivDescent + mRuleThickness); } if (IsToDraw(NOTATION_RADICAL)) { desiredSizeAscent = std::max(desiredSizeAscent, radicalAscent + leading); desiredSizeDescent = std::max(desiredSizeDescent, radicalDescent + mRadicalRuleThickness); } aDesiredSize.SetBlockStartAscent(desiredSizeAscent); aDesiredSize.Height() = desiredSizeAscent + desiredSizeDescent; } if (IsToDraw(NOTATION_CIRCLE) || IsToDraw(NOTATION_ROUNDEDBOX) || (IsToDraw(NOTATION_TOP) && IsToDraw(NOTATION_BOTTOM))) { // center the menclose around the content (vertically) nscoord dy = std::max(aDesiredSize.BlockStartAscent() - bmBase.ascent, aDesiredSize.Height() - aDesiredSize.BlockStartAscent() - bmBase.descent); aDesiredSize.SetBlockStartAscent(bmBase.ascent + dy); aDesiredSize.Height() = aDesiredSize.BlockStartAscent() + bmBase.descent + dy; } // Update mBoundingMetrics ascent/descent if (IsToDraw(NOTATION_TOP) || IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_UPDIAGONALSTRIKE) || IsToDraw(NOTATION_UPDIAGONALARROW) || IsToDraw(NOTATION_DOWNDIAGONALSTRIKE) || IsToDraw(NOTATION_VERTICALSTRIKE) || IsToDraw(NOTATION_CIRCLE) || IsToDraw(NOTATION_ROUNDEDBOX)) mBoundingMetrics.ascent = aDesiredSize.BlockStartAscent(); if (IsToDraw(NOTATION_BOTTOM) || IsToDraw(NOTATION_RIGHT) || IsToDraw(NOTATION_LEFT) || IsToDraw(NOTATION_UPDIAGONALSTRIKE) || IsToDraw(NOTATION_UPDIAGONALARROW) || IsToDraw(NOTATION_DOWNDIAGONALSTRIKE) || IsToDraw(NOTATION_VERTICALSTRIKE) || IsToDraw(NOTATION_CIRCLE) || IsToDraw(NOTATION_ROUNDEDBOX)) mBoundingMetrics.descent = aDesiredSize.Height() - aDesiredSize.BlockStartAscent(); // phasorangle notation: // move up from the bottom by the angled line height if (IsToDraw(NOTATION_PHASORANGLE)) mBoundingMetrics.ascent = std::max(mBoundingMetrics.ascent, 2 * kPhasorangleWidth * mRuleThickness - mBoundingMetrics.descent); aDesiredSize.mBoundingMetrics = mBoundingMetrics; mReference.x = 0; mReference.y = aDesiredSize.BlockStartAscent(); if (aPlaceOrigin) { ////////////////// // Set position and size of MathMLChars if (IsToDraw(NOTATION_LONGDIV)) mMathMLChar[mLongDivCharIndex].SetRect(nsRect(dx_left - bmLongdivChar.width, aDesiredSize.BlockStartAscent() - longdivAscent, bmLongdivChar.width, bmLongdivChar.ascent + bmLongdivChar.descent)); if (IsToDraw(NOTATION_RADICAL)) { nscoord dx = (StyleVisibility()->mDirection ? dx_left + bmBase.width : dx_left - bmRadicalChar.width); mMathMLChar[mRadicalCharIndex].SetRect(nsRect(dx, aDesiredSize.BlockStartAscent() - radicalAscent, bmRadicalChar.width, bmRadicalChar.ascent + bmRadicalChar.descent)); } mContentWidth = bmBase.width; ////////////////// // Finish reflowing child frames PositionRowChildFrames(dx_left, aDesiredSize.BlockStartAscent()); } return NS_OK; } nscoord nsMathMLmencloseFrame::FixInterFrameSpacing(ReflowOutput& aDesiredSize) { nscoord gap = nsMathMLContainerFrame::FixInterFrameSpacing(aDesiredSize); if (!gap) return 0; // Move the MathML characters nsRect rect; for (uint32_t i = 0; i < mMathMLChar.Length(); i++) { mMathMLChar[i].GetRect(rect); rect.MoveBy(gap, 0); mMathMLChar[i].SetRect(rect); } return gap; } nsresult nsMathMLmencloseFrame::AttributeChanged(int32_t aNameSpaceID, nsIAtom* aAttribute, int32_t aModType) { if (aAttribute == nsGkAtoms::notation_) { InitNotations(); } return nsMathMLContainerFrame:: AttributeChanged(aNameSpaceID, aAttribute, aModType); } ////////////////// // the Style System will use these to pass the proper style context to our // MathMLChar nsStyleContext* nsMathMLmencloseFrame::GetAdditionalStyleContext(int32_t aIndex) const { int32_t len = mMathMLChar.Length(); if (aIndex >= 0 && aIndex < len) return mMathMLChar[aIndex].GetStyleContext(); else return nullptr; } void nsMathMLmencloseFrame::SetAdditionalStyleContext(int32_t aIndex, nsStyleContext* aStyleContext) { int32_t len = mMathMLChar.Length(); if (aIndex >= 0 && aIndex < len) mMathMLChar[aIndex].SetStyleContext(aStyleContext); } class nsDisplayNotation : public nsDisplayItem { public: nsDisplayNotation(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aRect, nscoord aThickness, nsMencloseNotation aType) : nsDisplayItem(aBuilder, aFrame), mRect(aRect), mThickness(aThickness), mType(aType) { MOZ_COUNT_CTOR(nsDisplayNotation); } #ifdef NS_BUILD_REFCNT_LOGGING virtual ~nsDisplayNotation() { MOZ_COUNT_DTOR(nsDisplayNotation); } #endif virtual void Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) override; NS_DISPLAY_DECL_NAME("MathMLMencloseNotation", TYPE_MATHML_MENCLOSE_NOTATION) private: nsRect mRect; nscoord mThickness; nsMencloseNotation mType; }; void nsDisplayNotation::Paint(nsDisplayListBuilder* aBuilder, nsRenderingContext* aCtx) { DrawTarget& aDrawTarget = *aCtx->GetDrawTarget(); nsPresContext* presContext = mFrame->PresContext(); Float strokeWidth = presContext->AppUnitsToGfxUnits(mThickness); Rect rect = NSRectToRect(mRect + ToReferenceFrame(), presContext->AppUnitsPerDevPixel()); rect.Deflate(strokeWidth / 2.f); ColorPattern color(ToDeviceColor( mFrame->GetVisitedDependentColor(eCSSProperty__webkit_text_fill_color))); StrokeOptions strokeOptions(strokeWidth); switch(mType) { case NOTATION_CIRCLE: { RefPtr ellipse = MakePathForEllipse(aDrawTarget, rect.Center(), rect.Size()); aDrawTarget.Stroke(ellipse, color, strokeOptions); return; } case NOTATION_ROUNDEDBOX: { Float radius = 3 * strokeWidth; RectCornerRadii radii(radius, radius); RefPtr roundedRect = MakePathForRoundedRect(aDrawTarget, rect, radii, true); aDrawTarget.Stroke(roundedRect, color, strokeOptions); return; } case NOTATION_UPDIAGONALSTRIKE: { aDrawTarget.StrokeLine(rect.BottomLeft(), rect.TopRight(), color, strokeOptions); return; } case NOTATION_DOWNDIAGONALSTRIKE: { aDrawTarget.StrokeLine(rect.TopLeft(), rect.BottomRight(), color, strokeOptions); return; } case NOTATION_UPDIAGONALARROW: { // Compute some parameters to draw the updiagonalarrow. The values below // are taken from MathJax's HTML-CSS output. Float W = rect.Width(); gfxFloat H = rect.Height(); Float l = sqrt(W*W + H*H); Float f = Float(kArrowHeadSize) * strokeWidth / l; Float w = W * f; gfxFloat h = H * f; // Draw the arrow shaft aDrawTarget.StrokeLine(rect.BottomLeft(), rect.TopRight() + Point(-.7*w, .7*h), color, strokeOptions); // Draw the arrow head RefPtr builder = aDrawTarget.CreatePathBuilder(); builder->MoveTo(rect.TopRight()); builder->LineTo(rect.TopRight() + Point(-w -.4*h, std::max(-strokeWidth / 2.0, h - .4*w))); builder->LineTo(rect.TopRight() + Point(-.7*w, .7*h)); builder->LineTo(rect.TopRight() + Point(std::min(strokeWidth / 2.0, -w + .4*h), h + .4*w)); builder->Close(); RefPtr path = builder->Finish(); aDrawTarget.Fill(path, color); return; } case NOTATION_PHASORANGLE: { // Compute some parameters to draw the angled line, // that uses a slope of 2 (angle = tan^-1(2)). // H = w * tan(angle) = w * 2 Float w = Float(kPhasorangleWidth) * strokeWidth; Float H = 2 * w; // Draw the angled line aDrawTarget.StrokeLine(rect.BottomLeft(), rect.BottomLeft() + Point(w, -H), color, strokeOptions); return; } default: NS_NOTREACHED("This notation can not be drawn using nsDisplayNotation"); } } void nsMathMLmencloseFrame::DisplayNotation(nsDisplayListBuilder* aBuilder, nsIFrame* aFrame, const nsRect& aRect, const nsDisplayListSet& aLists, nscoord aThickness, nsMencloseNotation aType) { if (!aFrame->StyleVisibility()->IsVisible() || aRect.IsEmpty() || aThickness <= 0) return; aLists.Content()->AppendNewToTop(new (aBuilder) nsDisplayNotation(aBuilder, aFrame, aRect, aThickness, aType)); }