/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ // Copyright (c) 2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "chrome/common/ipc_channel_posix.h" #include #include #include #if defined(OS_MACOSX) #include #endif #include #include #include #include #include #include #include #include #include #include "base/command_line.h" #include "base/eintr_wrapper.h" #include "base/lock.h" #include "base/logging.h" #include "base/process_util.h" #include "base/string_util.h" #include "base/singleton.h" #include "chrome/common/chrome_switches.h" #include "chrome/common/file_descriptor_set_posix.h" #include "chrome/common/ipc_message_utils.h" #include "mozilla/ipc/ProtocolUtils.h" #include "mozilla/UniquePtr.h" #ifdef MOZ_FAULTY #include "mozilla/ipc/Faulty.h" #endif // Use OS specific iovec array limit where it's possible #if defined(IOV_MAX) static const size_t kMaxIOVecSize = IOV_MAX; // IOV_MAX isn't defined on Android, but the hard-coded 256 works well. #elif defined(ANDROID) static const size_t kMaxIOVecSize = 256; // On all other platforms, fallback to 16 (_XOPEN_IOV_MAX) as a safe bet. #else static const size_t kMaxIOVecSize = 16; #endif #ifdef MOZ_TASK_TRACER #include "GeckoTaskTracerImpl.h" using namespace mozilla::tasktracer; #endif namespace IPC { // IPC channels on Windows use named pipes (CreateNamedPipe()) with // channel ids as the pipe names. Channels on POSIX use anonymous // Unix domain sockets created via socketpair() as pipes. These don't // quite line up. // // When creating a child subprocess, the parent side of the fork // arranges it such that the initial control channel ends up on the // magic file descriptor kClientChannelFd in the child. Future // connections (file descriptors) can then be passed via that // connection via sendmsg(). //------------------------------------------------------------------------------ namespace { // The PipeMap class works around this quirk related to unit tests: // // When running as a server, we install the client socket in a // specific file descriptor number (@kClientChannelFd). However, we // also have to support the case where we are running unittests in the // same process. (We do not support forking without execing.) // // Case 1: normal running // The IPC server object will install a mapping in PipeMap from the // name which it was given to the client pipe. When forking the client, the // GetClientFileDescriptorMapping will ensure that the socket is installed in // the magic slot (@kClientChannelFd). The client will search for the // mapping, but it won't find any since we are in a new process. Thus the // magic fd number is returned. Once the client connects, the server will // close its copy of the client socket and remove the mapping. // // Case 2: unittests - client and server in the same process // The IPC server will install a mapping as before. The client will search // for a mapping and find out. It duplicates the file descriptor and // connects. Once the client connects, the server will close the original // copy of the client socket and remove the mapping. Thus, when the client // object closes, it will close the only remaining copy of the client socket // in the fd table and the server will see EOF on its side. // // TODO(port): a client process cannot connect to multiple IPC channels with // this scheme. class PipeMap { public: // Lookup a given channel id. Return -1 if not found. int Lookup(const std::string& channel_id) { AutoLock locked(lock_); ChannelToFDMap::const_iterator i = map_.find(channel_id); if (i == map_.end()) return -1; return i->second; } // Remove the mapping for the given channel id. No error is signaled if the // channel_id doesn't exist void Remove(const std::string& channel_id) { AutoLock locked(lock_); ChannelToFDMap::iterator i = map_.find(channel_id); if (i != map_.end()) map_.erase(i); } // Insert a mapping from @channel_id to @fd. It's a fatal error to insert a // mapping if one already exists for the given channel_id void Insert(const std::string& channel_id, int fd) { AutoLock locked(lock_); DCHECK(fd != -1); ChannelToFDMap::const_iterator i = map_.find(channel_id); CHECK(i == map_.end()) << "Creating second IPC server for '" << channel_id << "' while first still exists"; map_[channel_id] = fd; } private: Lock lock_; typedef std::map ChannelToFDMap; ChannelToFDMap map_; }; // This is the file descriptor number that a client process expects to find its // IPC socket. static const int kClientChannelFd = 3; // Used to map a channel name to the equivalent FD # in the client process. int ChannelNameToClientFD(const std::string& channel_id) { // See the large block comment above PipeMap for the reasoning here. const int fd = Singleton()->Lookup(channel_id); if (fd != -1) return dup(fd); // If we don't find an entry, we assume that the correct value has been // inserted in the magic slot. return kClientChannelFd; } //------------------------------------------------------------------------------ const size_t kMaxPipeNameLength = sizeof(((sockaddr_un*)0)->sun_path); bool SetCloseOnExec(int fd) { int flags = fcntl(fd, F_GETFD); if (flags == -1) return false; flags |= FD_CLOEXEC; if (fcntl(fd, F_SETFD, flags) == -1) return false; return true; } } // namespace //------------------------------------------------------------------------------ Channel::ChannelImpl::ChannelImpl(const std::wstring& channel_id, Mode mode, Listener* listener) : factory_(this) { Init(mode, listener); if (!CreatePipe(channel_id, mode)) { // The pipe may have been closed already. CHROMIUM_LOG(WARNING) << "Unable to create pipe named \"" << channel_id << "\" in " << (mode == MODE_SERVER ? "server" : "client") << " mode error(" << strerror(errno) << ")."; } } Channel::ChannelImpl::ChannelImpl(int fd, Mode mode, Listener* listener) : factory_(this) { Init(mode, listener); pipe_ = fd; waiting_connect_ = (MODE_SERVER == mode); EnqueueHelloMessage(); } void Channel::ChannelImpl::Init(Mode mode, Listener* listener) { DCHECK(kControlBufferSlopBytes >= CMSG_SPACE(0)); mode_ = mode; is_blocked_on_write_ = false; partial_write_iter_.reset(); input_buf_offset_ = 0; server_listen_pipe_ = -1; pipe_ = -1; client_pipe_ = -1; listener_ = listener; waiting_connect_ = true; processing_incoming_ = false; closed_ = false; #if defined(OS_MACOSX) last_pending_fd_id_ = 0; #endif output_queue_length_ = 0; } bool Channel::ChannelImpl::CreatePipe(const std::wstring& channel_id, Mode mode) { DCHECK(server_listen_pipe_ == -1 && pipe_ == -1); // socketpair() pipe_name_ = WideToASCII(channel_id); if (mode == MODE_SERVER) { int pipe_fds[2]; if (socketpair(AF_UNIX, SOCK_STREAM, 0, pipe_fds) != 0) { mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeSocketPairErrno", errno); return false; } // Set both ends to be non-blocking. if (fcntl(pipe_fds[0], F_SETFL, O_NONBLOCK) == -1 || fcntl(pipe_fds[1], F_SETFL, O_NONBLOCK) == -1) { mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeFcntlErrno", errno); HANDLE_EINTR(close(pipe_fds[0])); HANDLE_EINTR(close(pipe_fds[1])); return false; } if (!SetCloseOnExec(pipe_fds[0]) || !SetCloseOnExec(pipe_fds[1])) { mozilla::ipc::AnnotateCrashReportWithErrno("IpcCreatePipeCloExecErrno", errno); HANDLE_EINTR(close(pipe_fds[0])); HANDLE_EINTR(close(pipe_fds[1])); return false; } pipe_ = pipe_fds[0]; client_pipe_ = pipe_fds[1]; if (pipe_name_.length()) { Singleton()->Insert(pipe_name_, client_pipe_); } } else { pipe_ = ChannelNameToClientFD(pipe_name_); DCHECK(pipe_ > 0); waiting_connect_ = false; } // Create the Hello message to be sent when Connect is called return EnqueueHelloMessage(); } /** * Reset the file descriptor for communication with the peer. */ void Channel::ChannelImpl::ResetFileDescriptor(int fd) { NS_ASSERTION(fd > 0 && fd == pipe_, "Invalid file descriptor"); EnqueueHelloMessage(); } bool Channel::ChannelImpl::EnqueueHelloMessage() { mozilla::UniquePtr msg(new Message(MSG_ROUTING_NONE, HELLO_MESSAGE_TYPE)); if (!msg->WriteInt(base::GetCurrentProcId())) { Close(); return false; } OutputQueuePush(msg.release()); return true; } bool Channel::ChannelImpl::Connect() { if (pipe_ == -1) { return false; } MessageLoopForIO::current()->WatchFileDescriptor( pipe_, true, MessageLoopForIO::WATCH_READ, &read_watcher_, this); waiting_connect_ = false; if (!waiting_connect_) return ProcessOutgoingMessages(); return true; } bool Channel::ChannelImpl::ProcessIncomingMessages() { struct msghdr msg = {0}; struct iovec iov; msg.msg_iov = &iov; msg.msg_iovlen = 1; msg.msg_control = input_cmsg_buf_; for (;;) { msg.msg_controllen = sizeof(input_cmsg_buf_); if (pipe_ == -1) return false; // In some cases the beginning of a message will be stored in input_buf_. We // don't want to overwrite that, so we store the new data after it. iov.iov_base = input_buf_ + input_buf_offset_; iov.iov_len = Channel::kReadBufferSize - input_buf_offset_; // Read from pipe. // recvmsg() returns 0 if the connection has closed or EAGAIN if no data // is waiting on the pipe. ssize_t bytes_read = HANDLE_EINTR(recvmsg(pipe_, &msg, MSG_DONTWAIT)); if (bytes_read < 0) { if (errno == EAGAIN) { return true; } else { CHROMIUM_LOG(ERROR) << "pipe error (" << pipe_ << "): " << strerror(errno); return false; } } else if (bytes_read == 0) { // The pipe has closed... Close(); return false; } DCHECK(bytes_read); if (client_pipe_ != -1) { Singleton()->Remove(pipe_name_); HANDLE_EINTR(close(client_pipe_)); client_pipe_ = -1; } // a pointer to an array of |num_wire_fds| file descriptors from the read const int* wire_fds = NULL; unsigned num_wire_fds = 0; // walk the list of control messages and, if we find an array of file // descriptors, save a pointer to the array // This next if statement is to work around an OSX issue where // CMSG_FIRSTHDR will return non-NULL in the case that controllen == 0. // Here's a test case: // // int main() { // struct msghdr msg; // msg.msg_control = &msg; // msg.msg_controllen = 0; // if (CMSG_FIRSTHDR(&msg)) // printf("Bug found!\n"); // } if (msg.msg_controllen > 0) { // On OSX, CMSG_FIRSTHDR doesn't handle the case where controllen is 0 // and will return a pointer into nowhere. for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) { const unsigned payload_len = cmsg->cmsg_len - CMSG_LEN(0); DCHECK(payload_len % sizeof(int) == 0); wire_fds = reinterpret_cast(CMSG_DATA(cmsg)); num_wire_fds = payload_len / 4; if (msg.msg_flags & MSG_CTRUNC) { CHROMIUM_LOG(ERROR) << "SCM_RIGHTS message was truncated" << " cmsg_len:" << cmsg->cmsg_len << " fd:" << pipe_; for (unsigned i = 0; i < num_wire_fds; ++i) HANDLE_EINTR(close(wire_fds[i])); return false; } break; } } } // Process messages from input buffer. const char *p = input_buf_; const char *end = input_buf_ + input_buf_offset_ + bytes_read; // A pointer to an array of |num_fds| file descriptors which includes any // fds that have spilled over from a previous read. const int* fds; unsigned num_fds; unsigned fds_i = 0; // the index of the first unused descriptor if (input_overflow_fds_.empty()) { fds = wire_fds; num_fds = num_wire_fds; } else { const size_t prev_size = input_overflow_fds_.size(); input_overflow_fds_.resize(prev_size + num_wire_fds); memcpy(&input_overflow_fds_[prev_size], wire_fds, num_wire_fds * sizeof(int)); fds = &input_overflow_fds_[0]; num_fds = input_overflow_fds_.size(); } // The data for the message we're currently reading consists of any data // stored in incoming_message_ followed by data in input_buf_ (followed by // other messages). while (p < end) { // Try to figure out how big the message is. Size is 0 if we haven't read // enough of the header to know the size. uint32_t message_length = 0; if (incoming_message_.isSome()) { message_length = incoming_message_.ref().size(); } else { message_length = Message::MessageSize(p, end); } if (!message_length) { // We haven't seen the full message header. MOZ_ASSERT(incoming_message_.isNothing()); // Move everything we have to the start of the buffer. We'll finish // reading this message when we get more data. For now we leave it in // input_buf_. memmove(input_buf_, p, end - p); input_buf_offset_ = end - p; break; } input_buf_offset_ = 0; bool partial; if (incoming_message_.isSome()) { // We already have some data for this message stored in // incoming_message_. We want to append the new data there. Message& m = incoming_message_.ref(); // How much data from this message remains to be added to // incoming_message_? MOZ_ASSERT(message_length > m.CurrentSize()); uint32_t remaining = message_length - m.CurrentSize(); // How much data from this message is stored in input_buf_? uint32_t in_buf = std::min(remaining, uint32_t(end - p)); m.InputBytes(p, in_buf); p += in_buf; // Are we done reading this message? partial = in_buf != remaining; } else { // How much data from this message is stored in input_buf_? uint32_t in_buf = std::min(message_length, uint32_t(end - p)); incoming_message_.emplace(p, in_buf); p += in_buf; // Are we done reading this message? partial = in_buf != message_length; } if (partial) { break; } Message& m = incoming_message_.ref(); if (m.header()->num_fds) { // the message has file descriptors const char* error = NULL; if (m.header()->num_fds > num_fds - fds_i) { // the message has been completely received, but we didn't get // enough file descriptors. error = "Message needs unreceived descriptors"; } if (m.header()->num_fds > FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) { // There are too many descriptors in this message error = "Message requires an excessive number of descriptors"; } if (error) { CHROMIUM_LOG(WARNING) << error << " channel:" << this << " message-type:" << m.type() << " header()->num_fds:" << m.header()->num_fds << " num_fds:" << num_fds << " fds_i:" << fds_i; // close the existing file descriptors so that we don't leak them for (unsigned i = fds_i; i < num_fds; ++i) HANDLE_EINTR(close(fds[i])); input_overflow_fds_.clear(); // abort the connection return false; } #if defined(OS_MACOSX) // Send a message to the other side, indicating that we are now // responsible for closing the descriptor. Message *fdAck = new Message(MSG_ROUTING_NONE, RECEIVED_FDS_MESSAGE_TYPE); DCHECK(m.fd_cookie() != 0); fdAck->set_fd_cookie(m.fd_cookie()); OutputQueuePush(fdAck); #endif m.file_descriptor_set()->SetDescriptors( &fds[fds_i], m.header()->num_fds); fds_i += m.header()->num_fds; } #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "received message on channel @" << this << " with type " << m.type(); #endif #ifdef MOZ_TASK_TRACER AutoSaveCurTraceInfo saveCurTraceInfo; SetCurTraceInfo(m.header()->source_event_id, m.header()->parent_task_id, m.header()->source_event_type); #endif if (m.routing_id() == MSG_ROUTING_NONE && m.type() == HELLO_MESSAGE_TYPE) { // The Hello message contains only the process id. listener_->OnChannelConnected(MessageIterator(m).NextInt()); #if defined(OS_MACOSX) } else if (m.routing_id() == MSG_ROUTING_NONE && m.type() == RECEIVED_FDS_MESSAGE_TYPE) { DCHECK(m.fd_cookie() != 0); CloseDescriptors(m.fd_cookie()); #endif } else { listener_->OnMessageReceived(mozilla::Move(m)); } incoming_message_.reset(); } input_overflow_fds_ = std::vector(&fds[fds_i], &fds[num_fds]); // When the input data buffer is empty, the overflow fds should be too. If // this is not the case, we probably have a rogue renderer which is trying // to fill our descriptor table. if (incoming_message_.isNothing() && input_buf_offset_ == 0 && !input_overflow_fds_.empty()) { // We close these descriptors in Close() return false; } } return true; } bool Channel::ChannelImpl::ProcessOutgoingMessages() { DCHECK(!waiting_connect_); // Why are we trying to send messages if there's // no connection? is_blocked_on_write_ = false; if (output_queue_.empty()) return true; if (pipe_ == -1) return false; // Write out all the messages we can till the write blocks or there are no // more outgoing messages. while (!output_queue_.empty()) { #ifdef MOZ_FAULTY Singleton::get()->MaybeCollectAndClosePipe(pipe_); #endif Message* msg = output_queue_.front(); struct msghdr msgh = {0}; static const int tmp = CMSG_SPACE(sizeof( int[FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE])); char buf[tmp]; if (partial_write_iter_.isNothing()) { Pickle::BufferList::IterImpl iter(msg->Buffers()); partial_write_iter_.emplace(iter); } if (partial_write_iter_.value().Data() == msg->Buffers().Start() && !msg->file_descriptor_set()->empty()) { // This is the first chunk of a message which has descriptors to send struct cmsghdr *cmsg; const unsigned num_fds = msg->file_descriptor_set()->size(); if (num_fds > FileDescriptorSet::MAX_DESCRIPTORS_PER_MESSAGE) { CHROMIUM_LOG(FATAL) << "Too many file descriptors!"; // This should not be reached. return false; } msgh.msg_control = buf; msgh.msg_controllen = CMSG_SPACE(sizeof(int) * num_fds); cmsg = CMSG_FIRSTHDR(&msgh); cmsg->cmsg_level = SOL_SOCKET; cmsg->cmsg_type = SCM_RIGHTS; cmsg->cmsg_len = CMSG_LEN(sizeof(int) * num_fds); msg->file_descriptor_set()->GetDescriptors( reinterpret_cast(CMSG_DATA(cmsg))); msgh.msg_controllen = cmsg->cmsg_len; msg->header()->num_fds = num_fds; #if defined(OS_MACOSX) msg->set_fd_cookie(++last_pending_fd_id_); #endif } struct iovec iov[kMaxIOVecSize]; size_t iov_count = 0; size_t amt_to_write = 0; // How much of this message have we written so far? Pickle::BufferList::IterImpl iter = partial_write_iter_.value(); // Store the unwritten part of the first segment to write into the iovec. iov[0].iov_base = const_cast(iter.Data()); iov[0].iov_len = iter.RemainingInSegment(); amt_to_write += iov[0].iov_len; iter.Advance(msg->Buffers(), iov[0].iov_len); iov_count++; // Store remaining segments to write into iovec. while (!iter.Done()) { char* data = iter.Data(); size_t size = iter.RemainingInSegment(); // Don't add more than kMaxIOVecSize to the iovec so that we avoid // OS-dependent limits. if (iov_count < kMaxIOVecSize) { iov[iov_count].iov_base = data; iov[iov_count].iov_len = size; iov_count++; } amt_to_write += size; iter.Advance(msg->Buffers(), size); } msgh.msg_iov = iov; msgh.msg_iovlen = iov_count; ssize_t bytes_written = HANDLE_EINTR(sendmsg(pipe_, &msgh, MSG_DONTWAIT)); #if !defined(OS_MACOSX) // On OSX CommitAll gets called later, once we get the RECEIVED_FDS_MESSAGE_TYPE // message. if (bytes_written > 0) msg->file_descriptor_set()->CommitAll(); #endif if (bytes_written < 0) { switch (errno) { case EAGAIN: // Not an error; the sendmsg would have blocked, so return to the // event loop and try again later. break; #if defined(OS_MACOSX) // (Note: this comment is copied from https://crrev.com/86c3d9ef4fdf6; // see also bug 1142693 comment #73.) // // On OS X if sendmsg() is trying to send fds between processes and // there isn't enough room in the output buffer to send the fd // structure over atomically then EMSGSIZE is returned. // // EMSGSIZE presents a problem since the system APIs can only call us // when there's room in the socket buffer and not when there is // "enough" room. // // The current behavior is to return to the event loop when EMSGSIZE // is received and hopefull service another FD. This is however still // technically a busy wait since the event loop will call us right // back until the receiver has read enough data to allow passing the // FD over atomically. case EMSGSIZE: // Because this is likely to result in a busy-wait, we'll try to make // it easier for the receiver to make progress. sched_yield(); break; #endif default: CHROMIUM_LOG(ERROR) << "pipe error: " << strerror(errno); return false; } } if (static_cast(bytes_written) != amt_to_write) { // If write() fails with EAGAIN then bytes_written will be -1. if (bytes_written > 0) { partial_write_iter_.ref().AdvanceAcrossSegments(msg->Buffers(), bytes_written); } // Tell libevent to call us back once things are unblocked. is_blocked_on_write_ = true; MessageLoopForIO::current()->WatchFileDescriptor( pipe_, false, // One shot MessageLoopForIO::WATCH_WRITE, &write_watcher_, this); return true; } else { partial_write_iter_.reset(); #if defined(OS_MACOSX) if (!msg->file_descriptor_set()->empty()) pending_fds_.push_back(PendingDescriptors(msg->fd_cookie(), msg->file_descriptor_set())); #endif // Message sent OK! #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sent message @" << msg << " on channel @" << this << " with type " << msg->type(); #endif OutputQueuePop(); delete msg; } } return true; } bool Channel::ChannelImpl::Send(Message* message) { #ifdef IPC_MESSAGE_DEBUG_EXTRA DLOG(INFO) << "sending message @" << message << " on channel @" << this << " with type " << message->type() << " (" << output_queue_.size() << " in queue)"; #endif // If the channel has been closed, ProcessOutgoingMessages() is never going // to pop anything off output_queue; output_queue will only get emptied when // the channel is destructed. We might as well delete message now, instead // of waiting for the channel to be destructed. if (closed_) { if (mozilla::ipc::LoggingEnabled()) { fprintf(stderr, "Can't send message %s, because this channel is closed.\n", message->name()); } delete message; return false; } OutputQueuePush(message); if (!waiting_connect_) { if (!is_blocked_on_write_) { if (!ProcessOutgoingMessages()) return false; } } return true; } void Channel::ChannelImpl::GetClientFileDescriptorMapping(int *src_fd, int *dest_fd) const { DCHECK(mode_ == MODE_SERVER); *src_fd = client_pipe_; *dest_fd = kClientChannelFd; } void Channel::ChannelImpl::CloseClientFileDescriptor() { if (client_pipe_ != -1) { Singleton()->Remove(pipe_name_); HANDLE_EINTR(close(client_pipe_)); client_pipe_ = -1; } } // Called by libevent when we can read from th pipe without blocking. void Channel::ChannelImpl::OnFileCanReadWithoutBlocking(int fd) { if (!waiting_connect_ && fd == pipe_) { if (!ProcessIncomingMessages()) { Close(); listener_->OnChannelError(); // The OnChannelError() call may delete this, so we need to exit now. return; } } } #if defined(OS_MACOSX) void Channel::ChannelImpl::CloseDescriptors(uint32_t pending_fd_id) { DCHECK(pending_fd_id != 0); for (std::list::iterator i = pending_fds_.begin(); i != pending_fds_.end(); i++) { if ((*i).id == pending_fd_id) { (*i).fds->CommitAll(); pending_fds_.erase(i); return; } } DCHECK(false) << "pending_fd_id not in our list!"; } #endif void Channel::ChannelImpl::OutputQueuePush(Message* msg) { #ifdef MOZ_TASK_TRACER // Save the current TaskTracer info into the message header. GetCurTraceInfo(&msg->header()->source_event_id, &msg->header()->parent_task_id, &msg->header()->source_event_type); #endif output_queue_.push(msg); output_queue_length_++; } void Channel::ChannelImpl::OutputQueuePop() { output_queue_.pop(); output_queue_length_--; } // Called by libevent when we can write to the pipe without blocking. void Channel::ChannelImpl::OnFileCanWriteWithoutBlocking(int fd) { if (!ProcessOutgoingMessages()) { Close(); listener_->OnChannelError(); } } void Channel::ChannelImpl::Close() { // Close can be called multiple times, so we need to make sure we're // idempotent. // Unregister libevent for the listening socket and close it. server_listen_connection_watcher_.StopWatchingFileDescriptor(); if (server_listen_pipe_ != -1) { HANDLE_EINTR(close(server_listen_pipe_)); server_listen_pipe_ = -1; } // Unregister libevent for the FIFO and close it. read_watcher_.StopWatchingFileDescriptor(); write_watcher_.StopWatchingFileDescriptor(); if (pipe_ != -1) { HANDLE_EINTR(close(pipe_)); pipe_ = -1; } if (client_pipe_ != -1) { Singleton()->Remove(pipe_name_); HANDLE_EINTR(close(client_pipe_)); client_pipe_ = -1; } while (!output_queue_.empty()) { Message* m = output_queue_.front(); OutputQueuePop(); delete m; } // Close any outstanding, received file descriptors for (std::vector::iterator i = input_overflow_fds_.begin(); i != input_overflow_fds_.end(); ++i) { HANDLE_EINTR(close(*i)); } input_overflow_fds_.clear(); #if defined(OS_MACOSX) for (std::list::iterator i = pending_fds_.begin(); i != pending_fds_.end(); i++) { (*i).fds->CommitAll(); } pending_fds_.clear(); #endif closed_ = true; } bool Channel::ChannelImpl::Unsound_IsClosed() const { return closed_; } uint32_t Channel::ChannelImpl::Unsound_NumQueuedMessages() const { return output_queue_length_; } //------------------------------------------------------------------------------ // Channel's methods simply call through to ChannelImpl. Channel::Channel(const std::wstring& channel_id, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(channel_id, mode, listener)) { MOZ_COUNT_CTOR(IPC::Channel); } Channel::Channel(int fd, Mode mode, Listener* listener) : channel_impl_(new ChannelImpl(fd, mode, listener)) { MOZ_COUNT_CTOR(IPC::Channel); } Channel::~Channel() { MOZ_COUNT_DTOR(IPC::Channel); delete channel_impl_; } bool Channel::Connect() { return channel_impl_->Connect(); } void Channel::Close() { channel_impl_->Close(); } Channel::Listener* Channel::set_listener(Listener* listener) { return channel_impl_->set_listener(listener); } bool Channel::Send(Message* message) { return channel_impl_->Send(message); } void Channel::GetClientFileDescriptorMapping(int *src_fd, int *dest_fd) const { return channel_impl_->GetClientFileDescriptorMapping(src_fd, dest_fd); } void Channel::ResetFileDescriptor(int fd) { channel_impl_->ResetFileDescriptor(fd); } int Channel::GetFileDescriptor() const { return channel_impl_->GetFileDescriptor(); } void Channel::CloseClientFileDescriptor() { channel_impl_->CloseClientFileDescriptor(); } bool Channel::Unsound_IsClosed() const { return channel_impl_->Unsound_IsClosed(); } uint32_t Channel::Unsound_NumQueuedMessages() const { return channel_impl_->Unsound_NumQueuedMessages(); } // static std::wstring Channel::GenerateVerifiedChannelID(const std::wstring& prefix) { // A random name is sufficient validation on posix systems, so we don't need // an additional shared secret. std::wstring id = prefix; if (!id.empty()) id.append(L"."); return id.append(GenerateUniqueRandomChannelID()); } } // namespace IPC