Mypal/gfx/2d/convolverLS3.cpp

928 lines
36 KiB
C++

// Copyright (c) 2014-2015 The Chromium Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google, Inc. nor the names of its contributors
// may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
// BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
// OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
// AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
#include "convolver.h"
#include <algorithm>
#include "skia/include/core/SkTypes.h"
#if defined(_MIPS_ARCH_LOONGSON3A)
#include "MMIHelpers.h"
namespace skia {
// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the num_values() of the filter.
void ConvolveHorizontally_LS3(const unsigned char* src_data,
const ConvolutionFilter1D& filter,
unsigned char* out_row) {
int num_values = filter.num_values();
int tmp, filter_offset, filter_length;
double zero, mask[4], shuf_50, shuf_fa;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"xor %[zero], %[zero], %[zero] \n\t"
// |mask| will be used to decimate all extra filter coefficients that are
// loaded by SIMD when |filter_length| is not divisible by 4.
// mask[0] is not used in following algorithm.
"li %[tmp], 1 \n\t"
"dsll32 %[tmp], 0x10 \n\t"
"daddiu %[tmp], -1 \n\t"
"dmtc1 %[tmp], %[mask3] \n\t"
"dsrl %[tmp], 0x10 \n\t"
"mtc1 %[tmp], %[mask2] \n\t"
"dsrl %[tmp], 0x10 \n\t"
"mtc1 %[tmp], %[mask1] \n\t"
"ori %[tmp], $0, 0x50 \n\t"
"mtc1 %[tmp], %[shuf_50] \n\t"
"ori %[tmp], $0, 0xfa \n\t"
"mtc1 %[tmp], %[shuf_fa] \n\t"
".set pop \n\t"
:[zero]"=f"(zero), [mask1]"=f"(mask[1]),
[mask2]"=f"(mask[2]), [mask3]"=f"(mask[3]),
[shuf_50]"=f"(shuf_50), [shuf_fa]"=f"(shuf_fa),
[tmp]"=&r"(tmp)
);
// Output one pixel each iteration, calculating all channels (RGBA) together.
for (int out_x = 0; out_x < num_values; out_x++) {
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
double accumh, accuml;
// Compute the first pixel in this row that the filter affects. It will
// touch |filter_length| pixels (4 bytes each) after this.
const void *row_to_filter =
reinterpret_cast<const void*>(&src_data[filter_offset << 2]);
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
_mm_xor(accum, accum, accum)
".set pop \n\t"
:[accumh]"=f"(accumh), [accuml]"=f"(accuml)
);
// We will load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
double src16h, src16l, mul_hih, mul_hil, mul_loh, mul_lol;
double coeffh, coeffl, src8h, src8l, th, tl, coeff16h, coeff16l;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
// [16] xx xx xx xx c3 c2 c1 c0
"gsldlc1 %[coeffl], 7(%[fval]) \n\t"
"gsldrc1 %[coeffl], (%[fval]) \n\t"
"xor %[coeffh], %[coeffh], %[coeffh] \n\t"
// [16] xx xx xx xx c1 c1 c0 c0
_mm_pshuflh(coeff16, coeff, shuf_50)
// [16] c1 c1 c1 c1 c0 c0 c0 c0
_mm_punpcklhw(coeff16, coeff16, coeff16)
// Load four pixels => unpack the first two pixels to 16 bits =>
// multiply with coefficients => accumulate the convolution result.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
"gsldlc1 %[src8h], 0xf(%[rtf]) \n\t"
"gsldrc1 %[src8h], 0x8(%[rtf]) \n\t"
"gsldlc1 %[src8l], 0x7(%[rtf]) \n\t"
"gsldrc1 %[src8l], 0x0(%[rtf]) \n\t"
// [16] a1 b1 g1 r1 a0 b0 g0 r0
_mm_punpcklbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
// [32] a0*c0 b0*c0 g0*c0 r0*c0
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
// [32] a1*c1 b1*c1 g1*c1 r1*c1
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
// Duplicate 3rd and 4th coefficients for all channels =>
// unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
// => accumulate the convolution results.
// [16] xx xx xx xx c3 c3 c2 c2
_mm_pshuflh(coeff16, coeff, shuf_fa)
// [16] c3 c3 c3 c3 c2 c2 c2 c2
_mm_punpcklhw(coeff16, coeff16, coeff16)
// [16] a3 g3 b3 r3 a2 g2 b2 r2
_mm_punpckhbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
// [32] a2*c2 b2*c2 g2*c2 r2*c2
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
// [32] a3*c3 b3*c3 g3*c3 r3*c3
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
".set pop \n\t"
:[th]"=&f"(th), [tl]"=&f"(tl),
[src8h]"=&f"(src8h), [src8l]"=&f"(src8l),
[accumh]"+f"(accumh), [accuml]"+f"(accuml),
[src16h]"=&f"(src16h), [src16l]"=&f"(src16l),
[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl),
[coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l),
[mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil),
[mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol)
:[zeroh]"f"(zero), [zerol]"f"(zero),
[shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa),
[fval]"r"(filter_values), [rtf]"r"(row_to_filter)
);
// Advance the pixel and coefficients pointers.
row_to_filter += 16;
filter_values += 4;
}
// When |filter_length| is not divisible by 4, we need to decimate some of
// the filter coefficient that was loaded incorrectly to zero; Other than
// that the algorithm is same with above, except that the 4th pixel will be
// always absent.
int r = filter_length & 3;
if (r) {
double coeffh, coeffl, th, tl, coeff16h, coeff16l;
double src8h, src8l, src16h, src16l, mul_hih, mul_hil, mul_loh, mul_lol;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"gsldlc1 %[coeffl], 7(%[fval]) \n\t"
"gsldrc1 %[coeffl], (%[fval]) \n\t"
"xor %[coeffh], %[coeffh], %[coeffh] \n\t"
// Mask out extra filter taps.
"and %[coeffl], %[coeffl], %[mask] \n\t"
_mm_pshuflh(coeff16, coeff, shuf_50)
_mm_punpcklhw(coeff16, coeff16, coeff16)
"gsldlc1 %[src8h], 0xf(%[rtf]) \n\t"
"gsldrc1 %[src8h], 0x8(%[rtf]) \n\t"
"gsldlc1 %[src8l], 0x7(%[rtf]) \n\t"
"gsldrc1 %[src8l], 0x0(%[rtf]) \n\t"
_mm_punpcklbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
_mm_punpckhbh(src16, src8, zero)
_mm_pshuflh(coeff16, coeff, shuf_fa)
_mm_punpcklhw(coeff16, coeff16, coeff16)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum, accum, t)
".set pop \n\t"
:[th]"=&f"(th), [tl]"=&f"(tl),
[src8h]"=&f"(src8h), [src8l]"=&f"(src8l),
[accumh]"+f"(accumh), [accuml]"+f"(accuml),
[src16h]"=&f"(src16h), [src16l]"=&f"(src16l),
[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl),
[coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l),
[mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil),
[mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol)
:[fval]"r"(filter_values), [rtf]"r"(row_to_filter),
[zeroh]"f"(zero), [zerol]"f"(zero), [mask]"f"(mask[r]),
[shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa)
);
}
double t, sra;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"ori %[tmp], $0, %[sk_sra] \n\t"
"mtc1 %[tmp], %[sra] \n\t"
// Shift right for fixed point implementation.
_mm_psraw(accum, accum, sra)
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
_mm_packsswh(accum, accum, zero, t)
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
_mm_packushb(accum, accum, zero, t)
// Store the pixel value of 32 bits.
"swc1 %[accuml], (%[out_row]) \n\t"
".set pop \n\t"
:[sra]"=&f"(sra), [t]"=&f"(t), [tmp]"=&r"(tmp),
[accumh]"+f"(accumh), [accuml]"+f"(accuml)
:[sk_sra]"i"(ConvolutionFilter1D::kShiftBits),
[out_row]"r"(out_row), [zeroh]"f"(zero), [zerol]"f"(zero)
:"memory"
);
out_row += 4;
}
}
// Convolves horizontally along a single row. The row data is given in
// |src_data| and continues for the [begin, end) of the filter.
// Process one pixel at a time.
void ConvolveHorizontally1_LS3(const unsigned char* src_data,
const ConvolutionFilter1D& filter,
unsigned char* out_row) {
int num_values = filter.num_values();
double zero;
double sra;
asm volatile (
".set push \n"
".set arch=loongson3a \n"
"xor %[zero], %[zero], %[zero] \n"
"mtc1 %[sk_sra], %[sra] \n"
".set pop \n"
:[zero]"=&f"(zero), [sra]"=&f"(sra)
:[sk_sra]"r"(ConvolutionFilter1D::kShiftBits)
);
// Loop over each pixel on this row in the output image.
for (int out_x = 0; out_x < num_values; out_x++) {
// Get the filter that determines the current output pixel.
int filter_offset;
int filter_length;
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
// Compute the first pixel in this row that the filter affects. It will
// touch |filter_length| pixels (4 bytes each) after this.
const unsigned char* row_to_filter = &src_data[filter_offset * 4];
// Apply the filter to the row to get the destination pixel in |accum|.
double accuml;
double accumh;
asm volatile (
".set push \n"
".set arch=loongson3a \n"
"xor %[accuml], %[accuml], %[accuml] \n"
"xor %[accumh], %[accumh], %[accumh] \n"
".set pop \n"
:[accuml]"=&f"(accuml), [accumh]"=&f"(accumh)
);
for (int filter_x = 0; filter_x < filter_length; filter_x++) {
double src8;
double src16;
double coeff;
double coeff16;
asm volatile (
".set push \n"
".set arch=loongson3a \n"
"lwc1 %[src8], %[rtf] \n"
"mtc1 %[fv], %[coeff] \n"
"pshufh %[coeff16], %[coeff], %[zero] \n"
"punpcklbh %[src16], %[src8], %[zero] \n"
"pmullh %[src8], %[src16], %[coeff16] \n"
"pmulhh %[coeff], %[src16], %[coeff16] \n"
"punpcklhw %[src16], %[src8], %[coeff] \n"
"punpckhhw %[coeff16], %[src8], %[coeff] \n"
"paddw %[accuml], %[accuml], %[src16] \n"
"paddw %[accumh], %[accumh], %[coeff16] \n"
".set pop \n"
:[accuml]"+f"(accuml), [accumh]"+f"(accumh),
[src8]"=&f"(src8), [src16]"=&f"(src16),
[coeff]"=&f"(coeff), [coeff16]"=&f"(coeff16)
:[rtf]"m"(row_to_filter[filter_x * 4]),
[fv]"r"(filter_values[filter_x]), [zero]"f"(zero)
);
}
asm volatile (
".set push \n"
".set arch=loongson3a \n"
// Bring this value back in range. All of the filter scaling factors
// are in fixed point with kShiftBits bits of fractional part.
"psraw %[accuml], %[accuml], %[sra] \n"
"psraw %[accumh], %[accumh], %[sra] \n"
// Store the new pixel.
"packsswh %[accuml], %[accuml], %[accumh] \n"
"packushb %[accuml], %[accuml], %[zero] \n"
"swc1 %[accuml], %[out_row] \n"
".set pop \n"
:[accuml]"+f"(accuml), [accumh]"+f"(accumh)
:[sra]"f"(sra), [zero]"f"(zero), [out_row]"m"(out_row[out_x * 4])
:"memory"
);
}
}
// Convolves horizontally along four rows. The row data is given in
// |src_data| and continues for the num_values() of the filter.
// The algorithm is almost same as |ConvolveHorizontally_LS3|. Please
// refer to that function for detailed comments.
void ConvolveHorizontally4_LS3(const unsigned char* src_data[4],
const ConvolutionFilter1D& filter,
unsigned char* out_row[4]) {
int num_values = filter.num_values();
int tmp, filter_offset, filter_length;
double zero, mask[4], shuf_50, shuf_fa;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"xor %[zero], %[zero], %[zero] \n\t"
// |mask| will be used to decimate all extra filter coefficients that are
// loaded by SIMD when |filter_length| is not divisible by 4.
// mask[0] is not used in following algorithm.
"li %[tmp], 1 \n\t"
"dsll32 %[tmp], 0x10 \n\t"
"daddiu %[tmp], -1 \n\t"
"dmtc1 %[tmp], %[mask3] \n\t"
"dsrl %[tmp], 0x10 \n\t"
"mtc1 %[tmp], %[mask2] \n\t"
"dsrl %[tmp], 0x10 \n\t"
"mtc1 %[tmp], %[mask1] \n\t"
"ori %[tmp], $0, 0x50 \n\t"
"mtc1 %[tmp], %[shuf_50] \n\t"
"ori %[tmp], $0, 0xfa \n\t"
"mtc1 %[tmp], %[shuf_fa] \n\t"
".set pop \n\t"
:[zero]"=f"(zero), [mask1]"=f"(mask[1]),
[mask2]"=f"(mask[2]), [mask3]"=f"(mask[3]),
[shuf_50]"=f"(shuf_50), [shuf_fa]"=f"(shuf_fa),
[tmp]"=&r"(tmp)
);
// Output one pixel each iteration, calculating all channels (RGBA) together.
for (int out_x = 0; out_x < num_values; out_x++) {
const ConvolutionFilter1D::Fixed* filter_values =
filter.FilterForValue(out_x, &filter_offset, &filter_length);
double accum0h, accum0l, accum1h, accum1l;
double accum2h, accum2l, accum3h, accum3l;
// four pixels in a column per iteration.
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
_mm_xor(accum0, accum0, accum0)
_mm_xor(accum1, accum1, accum1)
_mm_xor(accum2, accum2, accum2)
_mm_xor(accum3, accum3, accum3)
".set pop \n\t"
:[accum0h]"=f"(accum0h), [accum0l]"=f"(accum0l),
[accum1h]"=f"(accum1h), [accum1l]"=f"(accum1l),
[accum2h]"=f"(accum2h), [accum2l]"=f"(accum2l),
[accum3h]"=f"(accum3h), [accum3l]"=f"(accum3l)
);
int start = (filter_offset<<2);
// We will load and accumulate with four coefficients per iteration.
for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
double src8h, src8l, src16h, src16l;
double mul_hih, mul_hil, mul_loh, mul_lol, th, tl;
double coeffh, coeffl, coeff16loh, coeff16lol, coeff16hih, coeff16hil;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// [16] xx xx xx xx c3 c2 c1 c0
"gsldlc1 %[coeffl], 7(%[fval]) \n\t"
"gsldrc1 %[coeffl], (%[fval]) \n\t"
"xor %[coeffh], %[coeffh], %[coeffh] \n\t"
// [16] xx xx xx xx c1 c1 c0 c0
_mm_pshuflh(coeff16lo, coeff, shuf_50)
// [16] c1 c1 c1 c1 c0 c0 c0 c0
_mm_punpcklhw(coeff16lo, coeff16lo, coeff16lo)
// [16] xx xx xx xx c3 c3 c2 c2
_mm_pshuflh(coeff16hi, coeff, shuf_fa)
// [16] c3 c3 c3 c3 c2 c2 c2 c2
_mm_punpcklhw(coeff16hi, coeff16hi, coeff16hi)
".set pop \n\t"
:[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl),
[coeff16loh]"=&f"(coeff16loh), [coeff16lol]"=&f"(coeff16lol),
[coeff16hih]"=&f"(coeff16hih), [coeff16hil]"=&f"(coeff16hil)
:[fval]"r"(filter_values), [shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa)
);
#define ITERATION(_src, _accumh, _accuml) \
asm volatile ( \
".set push \n\t" \
".set arch=loongson3a \n\t" \
"gsldlc1 %[src8h], 0xf(%[src]) \n\t" \
"gsldrc1 %[src8h], 0x8(%[src]) \n\t" \
"gsldlc1 %[src8l], 0x7(%[src]) \n\t" \
"gsldrc1 %[src8l], 0x0(%[src]) \n\t" \
_mm_punpcklbh(src16, src8, zero) \
_mm_pmulhh(mul_hi, src16, coeff16lo) \
_mm_pmullh(mul_lo, src16, coeff16lo) \
_mm_punpcklhw(t, mul_lo, mul_hi) \
_mm_paddw(accum, accum, t) \
_mm_punpckhhw(t, mul_lo, mul_hi) \
_mm_paddw(accum, accum, t) \
_mm_punpckhbh(src16, src8, zero) \
_mm_pmulhh(mul_hi, src16, coeff16hi) \
_mm_pmullh(mul_lo, src16, coeff16hi) \
_mm_punpcklhw(t, mul_lo, mul_hi) \
_mm_paddw(accum, accum, t) \
_mm_punpckhhw(t, mul_lo, mul_hi) \
_mm_paddw(accum, accum, t) \
".set pop \n\t" \
:[th]"=&f"(th), [tl]"=&f"(tl), \
[src8h]"=&f"(src8h), [src8l]"=&f"(src8l), \
[src16h]"=&f"(src16h), [src16l]"=&f"(src16l), \
[mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil), \
[mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol), \
[accumh]"+f"(_accumh), [accuml]"+f"(_accuml) \
:[zeroh]"f"(zero), [zerol]"f"(zero), [src]"r"(_src), \
[coeff16loh]"f"(coeff16loh), [coeff16lol]"f"(coeff16lol), \
[coeff16hih]"f"(coeff16hih), [coeff16hil]"f"(coeff16hil) \
);
ITERATION(src_data[0] + start, accum0h, accum0l);
ITERATION(src_data[1] + start, accum1h, accum1l);
ITERATION(src_data[2] + start, accum2h, accum2l);
ITERATION(src_data[3] + start, accum3h, accum3l);
start += 16;
filter_values += 4;
}
int r = filter_length & 3;
if (r) {
double src8h, src8l, src16h, src16l;
double mul_hih, mul_hil, mul_loh, mul_lol, th, tl;
double coeffh, coeffl, coeff16loh, coeff16lol, coeff16hih, coeff16hil;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"gsldlc1 %[coeffl], 7(%[fval]) \n\t"
"gsldrc1 %[coeffl], (%[fval]) \n\t"
"xor %[coeffh], %[coeffh], %[coeffh] \n\t"
// Mask out extra filter taps.
"and %[coeffl], %[coeffl], %[mask] \n\t"
_mm_pshuflh(coeff16lo, coeff, shuf_50)
/* c1 c1 c1 c1 c0 c0 c0 c0 */
_mm_punpcklhw(coeff16lo, coeff16lo, coeff16lo)
_mm_pshuflh(coeff16hi, coeff, shuf_fa)
_mm_punpcklhw(coeff16hi, coeff16hi, coeff16hi)
".set pop \n\t"
:[coeffh]"=&f"(coeffh), [coeffl]"=&f"(coeffl),
[coeff16loh]"=&f"(coeff16loh), [coeff16lol]"=&f"(coeff16lol),
[coeff16hih]"=&f"(coeff16hih), [coeff16hil]"=&f"(coeff16hil)
:[fval]"r"(filter_values), [mask]"f"(mask[r]),
[shuf_50]"f"(shuf_50), [shuf_fa]"f"(shuf_fa)
);
ITERATION(src_data[0] + start, accum0h, accum0l);
ITERATION(src_data[1] + start, accum1h, accum1l);
ITERATION(src_data[2] + start, accum2h, accum2l);
ITERATION(src_data[3] + start, accum3h, accum3l);
}
double t, sra;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"ori %[tmp], $0, %[sk_sra] \n\t"
"mtc1 %[tmp], %[sra] \n\t"
_mm_psraw(accum0, accum0, sra)
_mm_packsswh(accum0, accum0, zero, t)
_mm_packushb(accum0, accum0, zero, t)
_mm_psraw(accum1, accum1, sra)
_mm_packsswh(accum1, accum1, zero, t)
_mm_packushb(accum1, accum1, zero, t)
_mm_psraw(accum2, accum2, sra)
_mm_packsswh(accum2, accum2, zero, t)
_mm_packushb(accum2, accum2, zero, t)
_mm_psraw(accum3, accum3, sra)
_mm_packsswh(accum3, accum3, zero, t)
_mm_packushb(accum3, accum3, zero, t)
"swc1 %[accum0l], (%[out_row0]) \n\t"
"swc1 %[accum1l], (%[out_row1]) \n\t"
"swc1 %[accum2l], (%[out_row2]) \n\t"
"swc1 %[accum3l], (%[out_row3]) \n\t"
".set pop \n\t"
:[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l),
[accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l),
[accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l),
[sra]"=&f"(sra), [t]"=&f"(t), [tmp]"=&r"(tmp)
:[zeroh]"f"(zero), [zerol]"f"(zero),
[out_row0]"r"(out_row[0]), [out_row1]"r"(out_row[1]),
[out_row2]"r"(out_row[2]), [out_row3]"r"(out_row[3]),
[sk_sra]"i"(ConvolutionFilter1D::kShiftBits)
:"memory"
);
out_row[0] += 4;
out_row[1] += 4;
out_row[2] += 4;
out_row[3] += 4;
}
}
// Does vertical convolution to produce one output row. The filter values and
// length are given in the first two parameters. These are applied to each
// of the rows pointed to in the |source_data_rows| array, with each row
// being |pixel_width| wide.
//
// The output must have room for |pixel_width * 4| bytes.
template<bool has_alpha>
void ConvolveVertically_LS3_impl(const ConvolutionFilter1D::Fixed* filter_values,
int filter_length,
unsigned char* const* source_data_rows,
int pixel_width,
unsigned char* out_row) {
uint64_t tmp;
int width = pixel_width & ~3;
double zero, sra, coeff16h, coeff16l;
double accum0h, accum0l, accum1h, accum1l;
double accum2h, accum2l, accum3h, accum3l;
const void *src;
int out_x;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"xor %[zero], %[zero], %[zero] \n\t"
"ori %[tmp], $0, %[sk_sra] \n\t"
"mtc1 %[tmp], %[sra] \n\t"
".set pop \n\t"
:[zero]"=f"(zero), [sra]"=f"(sra), [tmp]"=&r"(tmp)
:[sk_sra]"i"(ConvolutionFilter1D::kShiftBits)
);
// Output four pixels per iteration (16 bytes).
for (out_x = 0; out_x < width; out_x += 4) {
// Accumulated result for each pixel. 32 bits per RGBA channel.
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
_mm_xor(accum0, accum0, accum0)
_mm_xor(accum1, accum1, accum1)
_mm_xor(accum2, accum2, accum2)
_mm_xor(accum3, accum3, accum3)
".set pop \n\t"
:[accum0h]"=f"(accum0h), [accum0l]"=f"(accum0l),
[accum1h]"=f"(accum1h), [accum1l]"=f"(accum1l),
[accum2h]"=f"(accum2h), [accum2l]"=f"(accum2l),
[accum3h]"=f"(accum3h), [accum3l]"=f"(accum3l)
);
// Convolve with one filter coefficient per iteration.
for (int filter_y = 0; filter_y < filter_length; filter_y++) {
double src8h, src8l, src16h, src16l;
double mul_hih, mul_hil, mul_loh, mul_lol, th, tl;
src = reinterpret_cast<const void*>(
&source_data_rows[filter_y][out_x << 2]);
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// Duplicate the filter coefficient 8 times.
// [16] cj cj cj cj cj cj cj cj
"gsldlc1 %[coeff16l], 7+%[fval] \n\t"
"gsldrc1 %[coeff16l], %[fval] \n\t"
"pshufh %[coeff16l], %[coeff16l], %[zerol] \n\t"
"mov.d %[coeff16h], %[coeff16l] \n\t"
// Load four pixels (16 bytes) together.
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
"gsldlc1 %[src8h], 0xf(%[src]) \n\t"
"gsldrc1 %[src8h], 0x8(%[src]) \n\t"
"gsldlc1 %[src8l], 0x7(%[src]) \n\t"
"gsldrc1 %[src8l], 0x0(%[src]) \n\t"
// Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
// multiply with current coefficient => accumulate the result.
// [16] a1 b1 g1 r1 a0 b0 g0 r0
_mm_punpcklbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
// [32] a0 b0 g0 r0
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum0, accum0, t)
// [32] a1 b1 g1 r1
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum1, accum1, t)
// Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
// multiply with current coefficient => accumulate the result.
// [16] a3 b3 g3 r3 a2 b2 g2 r2
_mm_punpckhbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
".set pop \n\t"
:[th]"=&f"(th), [tl]"=&f"(tl),
[src8h]"=&f"(src8h), [src8l]"=&f"(src8l),
[src16h]"=&f"(src16h), [src16l]"=&f"(src16l),
[mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil),
[mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l),
[coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l)
:[zeroh]"f"(zero), [zerol]"f"(zero),
[fval]"m"(filter_values[filter_y]),
[src]"r"(src)
);
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// [32] a2 b2 g2 r2
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum2, accum2, t)
// [32] a3 b3 g3 r3
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum3, accum3, t)
".set pop \n\t"
:[th]"=&f"(th), [tl]"=&f"(tl),
[mul_hih]"+f"(mul_hih), [mul_hil]"+f"(mul_hil),
[mul_loh]"+f"(mul_loh), [mul_lol]"+f"(mul_lol),
[accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l),
[accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l)
);
}
double t;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// Shift right for fixed point implementation.
_mm_psraw(accum0, accum0, sra)
_mm_psraw(accum1, accum1, sra)
_mm_psraw(accum2, accum2, sra)
_mm_psraw(accum3, accum3, sra)
// Packing 32 bits |accum| to 16 bits per channel (signed saturation).
// [16] a1 b1 g1 r1 a0 b0 g0 r0
_mm_packsswh(accum0, accum0, accum1, t)
// [16] a3 b3 g3 r3 a2 b2 g2 r2
_mm_packsswh(accum2, accum2, accum3, t)
// Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
_mm_packushb(accum0, accum0, accum2, t)
".set pop \n\t"
:[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l),
[accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l),
[accum3h]"+f"(accum3h), [accum3l]"+f"(accum3l),
[t]"=&f"(t)
:[sra]"f"(sra)
);
if (has_alpha) {
double ah, al, bh, bl, srl8, srl16, sll24;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"li %[tmp], 8 \n\t"
"mtc1 %[tmp], %[srl8] \n\t"
"li %[tmp], 16 \n\t"
"mtc1 %[tmp], %[srl16] \n\t"
"li %[tmp], 24 \n\t"
"mtc1 %[tmp], %[sll24] \n\t"
// Compute the max(ri, gi, bi) for each pixel.
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
_mm_psraw(a, accum0, srl8)
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
_mm_pmaxub(b, a, accum0) // Max of r and g.
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
_mm_psrlw(a, accum0, srl16)
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
_mm_pmaxub(b, a, b) // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
_mm_psllw(b, b, sll24)
// Make sure the value of alpha channel is always larger than maximum
// value of color channels.
_mm_pmaxub(accum0, b, accum0)
".set pop \n\t"
:[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[tmp]"=&r"(tmp), [ah]"=&f"(ah), [al]"=&f"(al),
[bh]"=&f"(bh), [bl]"=&f"(bl), [srl8]"=&f"(srl8),
[srl16]"=&f"(srl16), [sll24]"=&f"(sll24)
);
} else {
double maskh, maskl;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// Set value of alpha channels to 0xFF.
"li %[tmp], 0xff000000 \n\t"
"mtc1 %[tmp], %[maskl] \n\t"
"punpcklwd %[maskl], %[maskl], %[maskl] \n\t"
"mov.d %[maskh], %[maskl] \n\t"
_mm_or(accum0, accum0, mask)
".set pop \n\t"
:[maskh]"=&f"(maskh), [maskl]"=&f"(maskl),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[tmp]"=&r"(tmp)
);
}
// Store the convolution result (16 bytes) and advance the pixel pointers.
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"gssdlc1 %[accum0h], 0xf(%[out_row]) \n\t"
"gssdrc1 %[accum0h], 0x8(%[out_row]) \n\t"
"gssdlc1 %[accum0l], 0x7(%[out_row]) \n\t"
"gssdrc1 %[accum0l], 0x0(%[out_row]) \n\t"
".set pop \n\t"
::[accum0h]"f"(accum0h), [accum0l]"f"(accum0l),
[out_row]"r"(out_row)
:"memory"
);
out_row += 16;
}
// When the width of the output is not divisible by 4, We need to save one
// pixel (4 bytes) each time. And also the fourth pixel is always absent.
if (pixel_width & 3) {
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
_mm_xor(accum0, accum0, accum0)
_mm_xor(accum1, accum1, accum1)
_mm_xor(accum2, accum2, accum2)
".set pop \n\t"
:[accum0h]"=&f"(accum0h), [accum0l]"=&f"(accum0l),
[accum1h]"=&f"(accum1h), [accum1l]"=&f"(accum1l),
[accum2h]"=&f"(accum2h), [accum2l]"=&f"(accum2l)
);
for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
double src8h, src8l, src16h, src16l;
double th, tl, mul_hih, mul_hil, mul_loh, mul_lol;
src = reinterpret_cast<const void*>(
&source_data_rows[filter_y][out_x<<2]);
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"gsldlc1 %[coeff16l], 7+%[fval] \n\t"
"gsldrc1 %[coeff16l], %[fval] \n\t"
"pshufh %[coeff16l], %[coeff16l], %[zerol] \n\t"
"mov.d %[coeff16h], %[coeff16l] \n\t"
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
"gsldlc1 %[src8h], 0xf(%[src]) \n\t"
"gsldrc1 %[src8h], 0x8(%[src]) \n\t"
"gsldlc1 %[src8l], 0x7(%[src]) \n\t"
"gsldrc1 %[src8l], 0x0(%[src]) \n\t"
// [16] a1 b1 g1 r1 a0 b0 g0 r0
_mm_punpcklbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
// [32] a0 b0 g0 r0
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum0, accum0, t)
// [32] a1 b1 g1 r1
_mm_punpckhhw(t, mul_lo, mul_hi)
_mm_paddw(accum1, accum1, t)
// [16] a3 b3 g3 r3 a2 b2 g2 r2
_mm_punpckhbh(src16, src8, zero)
_mm_pmulhh(mul_hi, src16, coeff16)
_mm_pmullh(mul_lo, src16, coeff16)
// [32] a2 b2 g2 r2
_mm_punpcklhw(t, mul_lo, mul_hi)
_mm_paddw(accum2, accum2, t)
".set pop \n\t"
:[th]"=&f"(th), [tl]"=&f"(tl),
[src8h]"=&f"(src8h), [src8l]"=&f"(src8l),
[src16h]"=&f"(src16h), [src16l]"=&f"(src16l),
[mul_hih]"=&f"(mul_hih), [mul_hil]"=&f"(mul_hil),
[mul_loh]"=&f"(mul_loh), [mul_lol]"=&f"(mul_lol),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l),
[accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l),
[coeff16h]"=&f"(coeff16h), [coeff16l]"=&f"(coeff16l)
:[zeroh]"f"(zero), [zerol]"f"(zero),
[fval]"m"(filter_values[filter_y]),
[src]"r"(src)
);
}
double t;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
_mm_psraw(accum0, accum0, sra)
_mm_psraw(accum1, accum1, sra)
_mm_psraw(accum2, accum2, sra)
// [16] a1 b1 g1 r1 a0 b0 g0 r0
_mm_packsswh(accum0, accum0, accum1, t)
// [16] a3 b3 g3 r3 a2 b2 g2 r2
_mm_packsswh(accum2, accum2, zero, t)
// [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
_mm_packushb(accum0, accum0, accum2, t)
".set pop \n\t"
:[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[accum1h]"+f"(accum1h), [accum1l]"+f"(accum1l),
[accum2h]"+f"(accum2h), [accum2l]"+f"(accum2l),
[t]"=&f"(t)
:[zeroh]"f"(zero), [zerol]"f"(zero), [sra]"f"(sra)
);
if (has_alpha) {
double ah, al, bh, bl, srl8, srl16, sll24;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"li %[tmp], 8 \n\t"
"mtc1 %[tmp], %[srl8] \n\t"
"li %[tmp], 16 \n\t"
"mtc1 %[tmp], %[srl16] \n\t"
"li %[tmp], 24 \n\t"
"mtc1 %[tmp], %[sll24] \n\t"
// [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
_mm_psrlw(a, accum0, srl8)
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
_mm_pmaxub(b, a, accum0) // Max of r and g.
// [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
_mm_psrlw(a, accum0, srl16)
// [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
_mm_pmaxub(b, a, b) // Max of r and g and b.
// [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
_mm_psllw(b, b, sll24)
_mm_pmaxub(accum0, b, accum0)
".set pop \n\t"
:[ah]"=&f"(ah), [al]"=&f"(al), [bh]"=&f"(bh), [bl]"=&f"(bl),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l), [tmp]"=&r"(tmp),
[srl8]"=&f"(srl8), [srl16]"=&f"(srl16), [sll24]"=&f"(sll24)
);
} else {
double maskh, maskl;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
// Set value of alpha channels to 0xFF.
"li %[tmp], 0xff000000 \n\t"
"mtc1 %[tmp], %[maskl] \n\t"
"punpcklwd %[maskl], %[maskl], %[maskl] \n\t"
"mov.d %[maskh], %[maskl] \n\t"
_mm_or(accum0, accum0, mask)
".set pop \n\t"
:[maskh]"=&f"(maskh), [maskl]"=&f"(maskl),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l),
[tmp]"=&r"(tmp)
);
}
double s4, s64;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"li %[tmp], 4 \n\t"
"mtc1 %[tmp], %[s4] \n\t"
"li %[tmp], 64 \n\t"
"mtc1 %[tmp], %[s64] \n\t"
".set pop \n\t"
:[s4]"=f"(s4), [s64]"=f"(s64),
[tmp]"=&r"(tmp)
);
for (int out_x = width; out_x < pixel_width; out_x++) {
double t;
asm volatile (
".set push \n\t"
".set arch=loongson3a \n\t"
"swc1 %[accum0l], (%[out_row]) \n\t"
_mm_psrlq(accum0, accum0, s4, s64, t)
".set pop \n\t"
:[t]"=&f"(t),
[accum0h]"+f"(accum0h), [accum0l]"+f"(accum0l)
:[out_row]"r"(out_row), [s4]"f"(s4), [s64]"f"(s64)
:"memory"
);
out_row += 4;
}
}
}
void ConvolveVertically_LS3(const ConvolutionFilter1D::Fixed* filter_values,
int filter_length,
unsigned char* const* source_data_rows,
int pixel_width,
unsigned char* out_row, bool has_alpha) {
if (has_alpha) {
ConvolveVertically_LS3_impl<true>(filter_values, filter_length,
source_data_rows, pixel_width, out_row);
} else {
ConvolveVertically_LS3_impl<false>(filter_values, filter_length,
source_data_rows, pixel_width, out_row);
}
}
} // namespace skia
#endif /* _MIPS_ARCH_LOONGSON3A */