Mypal/gfx/ipc/GPUProcessManager.cpp

788 lines
22 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GPUProcessManager.h"
#include "GPUProcessHost.h"
#include "GPUProcessListener.h"
#include "GPUChild.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/layers/APZCTreeManager.h"
#include "mozilla/layers/APZCTreeManagerChild.h"
#include "mozilla/layers/CompositorBridgeParent.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "mozilla/layers/ImageBridgeParent.h"
#include "mozilla/layers/InProcessCompositorSession.h"
#include "mozilla/layers/LayerTreeOwnerTracker.h"
#include "mozilla/layers/RemoteCompositorSession.h"
#include "mozilla/widget/PlatformWidgetTypes.h"
#ifdef MOZ_WIDGET_SUPPORTS_OOP_COMPOSITING
# include "mozilla/widget/CompositorWidgetChild.h"
#endif
#include "gfxConfig.h"
#include "nsBaseWidget.h"
#include "nsContentUtils.h"
#include "VsyncBridgeChild.h"
#include "VsyncIOThreadHolder.h"
#include "VsyncSource.h"
#include "mozilla/dom/VideoDecoderManagerChild.h"
#include "mozilla/dom/VideoDecoderManagerParent.h"
#include "MediaPrefs.h"
using namespace mozilla::ipc;
using namespace mozilla::widget;
namespace mozilla {
namespace gfx {
using namespace mozilla::layers;
static StaticAutoPtr<GPUProcessManager> sSingleton;
GPUProcessManager*
GPUProcessManager::Get()
{
return sSingleton;
}
void
GPUProcessManager::Initialize()
{
MOZ_ASSERT(XRE_IsParentProcess());
sSingleton = new GPUProcessManager();
}
void
GPUProcessManager::Shutdown()
{
sSingleton = nullptr;
}
GPUProcessManager::GPUProcessManager()
: mTaskFactory(this),
mNextLayerTreeId(0),
mNumProcessAttempts(0),
mDeviceResetCount(0),
mProcess(nullptr),
mGPUChild(nullptr)
{
MOZ_COUNT_CTOR(GPUProcessManager);
mObserver = new Observer(this);
nsContentUtils::RegisterShutdownObserver(mObserver);
mDeviceResetLastTime = TimeStamp::Now();
LayerTreeOwnerTracker::Initialize();
}
GPUProcessManager::~GPUProcessManager()
{
MOZ_COUNT_DTOR(GPUProcessManager);
LayerTreeOwnerTracker::Shutdown();
// The GPU process should have already been shut down.
MOZ_ASSERT(!mProcess && !mGPUChild);
// We should have already removed observers.
MOZ_ASSERT(!mObserver);
}
NS_IMPL_ISUPPORTS(GPUProcessManager::Observer, nsIObserver);
GPUProcessManager::Observer::Observer(GPUProcessManager* aManager)
: mManager(aManager)
{
}
NS_IMETHODIMP
GPUProcessManager::Observer::Observe(nsISupports* aSubject, const char* aTopic, const char16_t* aData)
{
if (!strcmp(aTopic, NS_XPCOM_SHUTDOWN_OBSERVER_ID)) {
mManager->OnXPCOMShutdown();
}
return NS_OK;
}
void
GPUProcessManager::OnXPCOMShutdown()
{
if (mObserver) {
nsContentUtils::UnregisterShutdownObserver(mObserver);
mObserver = nullptr;
}
CleanShutdown();
}
void
GPUProcessManager::LaunchGPUProcess()
{
if (mProcess) {
return;
}
// Start the Vsync I/O thread so can use it as soon as the process launches.
EnsureVsyncIOThread();
mNumProcessAttempts++;
// The subprocess is launched asynchronously, so we wait for a callback to
// acquire the IPDL actor.
mProcess = new GPUProcessHost(this);
if (!mProcess->Launch()) {
DisableGPUProcess("Failed to launch GPU process");
}
}
void
GPUProcessManager::DisableGPUProcess(const char* aMessage)
{
if (!gfxConfig::IsEnabled(Feature::GPU_PROCESS)) {
return;
}
gfxConfig::SetFailed(Feature::GPU_PROCESS, FeatureStatus::Failed, aMessage);
gfxCriticalNote << aMessage;
DestroyProcess();
ShutdownVsyncIOThread();
}
void
GPUProcessManager::EnsureGPUReady()
{
if (mProcess && !mProcess->IsConnected()) {
if (!mProcess->WaitForLaunch()) {
// If this fails, we should have fired OnProcessLaunchComplete and
// removed the process.
MOZ_ASSERT(!mProcess && !mGPUChild);
return;
}
}
if (mGPUChild) {
mGPUChild->EnsureGPUReady();
}
}
void
GPUProcessManager::EnsureImageBridgeChild()
{
if (ImageBridgeChild::GetSingleton()) {
return;
}
EnsureGPUReady();
if (!mGPUChild) {
ImageBridgeChild::InitSameProcess();
return;
}
ipc::Endpoint<PImageBridgeParent> parentPipe;
ipc::Endpoint<PImageBridgeChild> childPipe;
nsresult rv = PImageBridge::CreateEndpoints(
mGPUChild->OtherPid(),
base::GetCurrentProcId(),
&parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PImageBridge endpoints");
return;
}
mGPUChild->SendInitImageBridge(Move(parentPipe));
ImageBridgeChild::InitWithGPUProcess(Move(childPipe));
}
void
GPUProcessManager::OnProcessLaunchComplete(GPUProcessHost* aHost)
{
MOZ_ASSERT(mProcess && mProcess == aHost);
if (!mProcess->IsConnected()) {
DisableGPUProcess("Failed to launch GPU process");
return;
}
mGPUChild = mProcess->GetActor();
mProcessToken = mProcess->GetProcessToken();
Endpoint<PVsyncBridgeParent> vsyncParent;
Endpoint<PVsyncBridgeChild> vsyncChild;
nsresult rv = PVsyncBridge::CreateEndpoints(
mGPUChild->OtherPid(),
base::GetCurrentProcId(),
&vsyncParent,
&vsyncChild);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PVsyncBridge endpoints");
return;
}
mVsyncBridge = VsyncBridgeChild::Create(mVsyncIOThread, mProcessToken, Move(vsyncChild));
mGPUChild->SendInitVsyncBridge(Move(vsyncParent));
nsTArray<LayerTreeIdMapping> mappings;
LayerTreeOwnerTracker::Get()->Iterate([&](uint64_t aLayersId, base::ProcessId aProcessId) {
mappings.AppendElement(LayerTreeIdMapping(aLayersId, aProcessId));
});
mGPUChild->SendAddLayerTreeIdMapping(mappings);
}
static bool
ShouldLimitDeviceResets(uint32_t count, int32_t deltaMilliseconds)
{
// We decide to limit by comparing the amount of resets that have happened
// and time since the last reset to two prefs.
int32_t timeLimit = gfxPrefs::DeviceResetThresholdMilliseconds();
int32_t countLimit = gfxPrefs::DeviceResetLimitCount();
bool hasTimeLimit = timeLimit != -1;
bool hasCountLimit = countLimit != -1;
bool triggeredTime = deltaMilliseconds < timeLimit;
bool triggeredCount = count > (uint32_t)countLimit;
// If we have both prefs set then it needs to trigger both limits,
// otherwise we only test the pref that is set or none
if (hasTimeLimit && hasCountLimit) {
return triggeredTime && triggeredCount;
} else if (hasTimeLimit) {
return triggeredTime;
} else if (hasCountLimit) {
return triggeredCount;
}
return false;
}
void
GPUProcessManager::OnProcessDeviceReset(GPUProcessHost* aHost)
{
// Detect whether the device is resetting too quickly or too much
// indicating that we should give up and use software
mDeviceResetCount++;
auto newTime = TimeStamp::Now();
auto delta = (int32_t)(newTime - mDeviceResetLastTime).ToMilliseconds();
mDeviceResetLastTime = newTime;
if (ShouldLimitDeviceResets(mDeviceResetCount, delta)) {
DestroyProcess();
DisableGPUProcess("GPU processed experienced too many device resets");
HandleProcessLost();
return;
}
// We're good, do a reset like normal
for (auto& session : mRemoteSessions) {
session->NotifyDeviceReset();
}
}
void
GPUProcessManager::OnProcessUnexpectedShutdown(GPUProcessHost* aHost)
{
MOZ_ASSERT(mProcess && mProcess == aHost);
DestroyProcess();
if (mNumProcessAttempts > uint32_t(gfxPrefs::GPUProcessDevMaxRestarts())) {
DisableGPUProcess("GPU processed crashed too many times");
}
HandleProcessLost();
}
void
GPUProcessManager::HandleProcessLost()
{
if (gfxConfig::IsEnabled(Feature::GPU_PROCESS)) {
LaunchGPUProcess();
}
// The shutdown and restart sequence for the GPU process is as follows:
//
// (1) The GPU process dies. IPDL will enqueue an ActorDestroy message on
// each channel owning a bridge to the GPU process, on the thread
// owning that channel.
//
// (2) The first channel to process its ActorDestroy message will post a
// message to the main thread to call NotifyRemoteActorDestroyed on
// the GPUProcessManager, which calls OnProcessUnexpectedShutdown if
// it has not handled shutdown for this process yet.
//
// (3) We then notify each widget that its session with the compositor is
// now invalid. The widget is responsible for destroying its layer
// manager and CompositorBridgeChild. Note that at this stage, not
// all actors may have received ActorDestroy yet. CompositorBridgeChild
// may attempt to send messages, and if this happens, it will probably
// report a MsgDropped error. This is okay.
//
// (4) At this point, the UI process has a clean slate: no layers should
// exist for the old compositor. We may make a decision on whether or
// not to re-launch the GPU process. Currently, we do not relaunch it,
// and any new compositors will be created in-process and will default
// to software.
//
// (5) Next we notify each ContentParent of the lost connection. It will
// request new endpoints from the GPUProcessManager and forward them
// to its ContentChild. The parent-side of these endpoints may come
// from the compositor thread of the UI process, or the compositor
// thread of the GPU process. However, no actual compositors should
// exist yet.
//
// (6) Each ContentChild will receive new endpoints. It will destroy its
// Compositor/ImageBridgeChild singletons and recreate them, as well
// as invalidate all retained layers.
//
// (7) In addition, each ContentChild will ask each of its TabChildren
// to re-request association with the compositor for the window
// owning the tab. The sequence of calls looks like:
// (a) [CONTENT] ContentChild::RecvReinitRendering
// (b) [CONTENT] TabChild::ReinitRendering
// (c) [CONTENT] TabChild::SendEnsureLayersConnected
// (d) [UI] TabParent::RecvEnsureLayersConnected
// (e) [UI] RenderFrameParent::EnsureLayersConnected
// (f) [UI] CompositorBridgeChild::SendNotifyChildRecreated
//
// Note that at step (e), RenderFrameParent will call GetLayerManager
// on the nsIWidget owning the tab. This step ensures that a compositor
// exists for the window. If we decided to launch a new GPU Process,
// at this point we block until the process has launched and we're
// able to create a new window compositor. Otherwise, if compositing
// is now in-process, this will simply create a new
// CompositorBridgeParent in the UI process. If there are multiple tabs
// in the same window, additional tabs will simply return the already-
// established compositor.
//
// Finally, this step serves one other crucial function: tabs must be
// associated with a window compositor or else they can't forward
// layer transactions. So this step both ensures that a compositor
// exists, and that the tab can forward layers.
//
// (8) Last, if the window had no remote tabs, step (7) will not have
// applied, and the window will not have a new compositor just yet.
// The next refresh tick and paint will ensure that one exists, again
// via nsIWidget::GetLayerManager.
// Build a list of sessions to notify, since notification might delete
// entries from the list.
nsTArray<RefPtr<RemoteCompositorSession>> sessions;
for (auto& session : mRemoteSessions) {
sessions.AppendElement(session);
}
// Notify each widget that we have lost the GPU process. This will ensure
// that each widget destroys its layer manager and CompositorBridgeChild.
for (const auto& session : sessions) {
session->NotifySessionLost();
}
// Notify content. This will ensure that each content process re-establishes
// a connection to the compositor thread (whether it's in-process or in a
// newly launched GPU process).
for (const auto& listener : mListeners) {
listener->OnCompositorUnexpectedShutdown();
}
}
void
GPUProcessManager::NotifyRemoteActorDestroyed(const uint64_t& aProcessToken)
{
if (!NS_IsMainThread()) {
RefPtr<Runnable> task = mTaskFactory.NewRunnableMethod(
&GPUProcessManager::NotifyRemoteActorDestroyed, aProcessToken);
NS_DispatchToMainThread(task.forget());
return;
}
if (mProcessToken != aProcessToken) {
// This token is for an older process; we can safely ignore it.
return;
}
// One of the bridged top-level actors for the GPU process has been
// prematurely terminated, and we're receiving a notification. This
// can happen if the ActorDestroy for a bridged protocol fires
// before the ActorDestroy for PGPUChild.
OnProcessUnexpectedShutdown(mProcess);
}
void
GPUProcessManager::CleanShutdown()
{
DestroyProcess();
mVsyncIOThread = nullptr;
}
void
GPUProcessManager::KillProcess()
{
if (!mProcess) {
return;
}
mProcess->KillProcess();
}
void
GPUProcessManager::DestroyProcess()
{
if (!mProcess) {
return;
}
mProcess->Shutdown();
mProcessToken = 0;
mProcess = nullptr;
mGPUChild = nullptr;
if (mVsyncBridge) {
mVsyncBridge->Close();
mVsyncBridge = nullptr;
}
}
RefPtr<CompositorSession>
GPUProcessManager::CreateTopLevelCompositor(nsBaseWidget* aWidget,
LayerManager* aLayerManager,
CSSToLayoutDeviceScale aScale,
bool aUseAPZ,
bool aUseExternalSurfaceSize,
const gfx::IntSize& aSurfaceSize)
{
uint64_t layerTreeId = AllocateLayerTreeId();
EnsureGPUReady();
EnsureImageBridgeChild();
if (mGPUChild) {
RefPtr<CompositorSession> session = CreateRemoteSession(
aWidget,
aLayerManager,
layerTreeId,
aScale,
aUseAPZ,
aUseExternalSurfaceSize,
aSurfaceSize);
if (session) {
return session;
}
// We couldn't create a remote compositor, so abort the process.
DisableGPUProcess("Failed to create remote compositor");
}
return InProcessCompositorSession::Create(
aWidget,
aLayerManager,
layerTreeId,
aScale,
aUseAPZ,
aUseExternalSurfaceSize,
aSurfaceSize);
}
RefPtr<CompositorSession>
GPUProcessManager::CreateRemoteSession(nsBaseWidget* aWidget,
LayerManager* aLayerManager,
const uint64_t& aRootLayerTreeId,
CSSToLayoutDeviceScale aScale,
bool aUseAPZ,
bool aUseExternalSurfaceSize,
const gfx::IntSize& aSurfaceSize)
{
#ifdef MOZ_WIDGET_SUPPORTS_OOP_COMPOSITING
ipc::Endpoint<PCompositorBridgeParent> parentPipe;
ipc::Endpoint<PCompositorBridgeChild> childPipe;
nsresult rv = PCompositorBridge::CreateEndpoints(
mGPUChild->OtherPid(),
base::GetCurrentProcId(),
&parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Failed to create PCompositorBridge endpoints: " << hexa(int(rv));
return nullptr;
}
RefPtr<CompositorBridgeChild> child = CompositorBridgeChild::CreateRemote(
mProcessToken,
aLayerManager,
Move(childPipe));
if (!child) {
gfxCriticalNote << "Failed to create CompositorBridgeChild";
return nullptr;
}
CompositorWidgetInitData initData;
aWidget->GetCompositorWidgetInitData(&initData);
TimeDuration vsyncRate =
gfxPlatform::GetPlatform()->GetHardwareVsync()->GetGlobalDisplay().GetVsyncRate();
bool ok = mGPUChild->SendNewWidgetCompositor(
Move(parentPipe),
aScale,
vsyncRate,
aUseExternalSurfaceSize,
aSurfaceSize);
if (!ok) {
return nullptr;
}
RefPtr<CompositorVsyncDispatcher> dispatcher = aWidget->GetCompositorVsyncDispatcher();
RefPtr<CompositorWidgetVsyncObserver> observer =
new CompositorWidgetVsyncObserver(mVsyncBridge, aRootLayerTreeId);
CompositorWidgetChild* widget = new CompositorWidgetChild(dispatcher, observer);
if (!child->SendPCompositorWidgetConstructor(widget, initData)) {
return nullptr;
}
if (!child->SendInitialize(aRootLayerTreeId)) {
return nullptr;
}
RefPtr<APZCTreeManagerChild> apz = nullptr;
if (aUseAPZ) {
PAPZCTreeManagerChild* papz = child->SendPAPZCTreeManagerConstructor(0);
if (!papz) {
return nullptr;
}
apz = static_cast<APZCTreeManagerChild*>(papz);
}
RefPtr<RemoteCompositorSession> session =
new RemoteCompositorSession(aWidget, child, widget, apz, aRootLayerTreeId);
return session.forget();
#else
gfxCriticalNote << "Platform does not support out-of-process compositing";
return nullptr;
#endif
}
bool
GPUProcessManager::CreateContentBridges(base::ProcessId aOtherProcess,
ipc::Endpoint<PCompositorBridgeChild>* aOutCompositor,
ipc::Endpoint<PImageBridgeChild>* aOutImageBridge,
ipc::Endpoint<dom::PVideoDecoderManagerChild>* aOutVideoManager)
{
if (!CreateContentCompositorBridge(aOtherProcess, aOutCompositor) ||
!CreateContentImageBridge(aOtherProcess, aOutImageBridge))
{
return false;
}
// VideoDeocderManager is only supported in the GPU process, so we allow this to be
// fallible.
CreateContentVideoDecoderManager(aOtherProcess, aOutVideoManager);
return true;
}
bool
GPUProcessManager::CreateContentCompositorBridge(base::ProcessId aOtherProcess,
ipc::Endpoint<PCompositorBridgeChild>* aOutEndpoint)
{
EnsureGPUReady();
ipc::Endpoint<PCompositorBridgeParent> parentPipe;
ipc::Endpoint<PCompositorBridgeChild> childPipe;
base::ProcessId gpuPid = mGPUChild
? mGPUChild->OtherPid()
: base::GetCurrentProcId();
nsresult rv = PCompositorBridge::CreateEndpoints(
gpuPid,
aOtherProcess,
&parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content compositor bridge: " << hexa(int(rv));
return false;
}
if (mGPUChild) {
mGPUChild->SendNewContentCompositorBridge(Move(parentPipe));
} else {
if (!CompositorBridgeParent::CreateForContent(Move(parentPipe))) {
return false;
}
}
*aOutEndpoint = Move(childPipe);
return true;
}
bool
GPUProcessManager::CreateContentImageBridge(base::ProcessId aOtherProcess,
ipc::Endpoint<PImageBridgeChild>* aOutEndpoint)
{
EnsureImageBridgeChild();
base::ProcessId gpuPid = mGPUChild
? mGPUChild->OtherPid()
: base::GetCurrentProcId();
ipc::Endpoint<PImageBridgeParent> parentPipe;
ipc::Endpoint<PImageBridgeChild> childPipe;
nsresult rv = PImageBridge::CreateEndpoints(
gpuPid,
aOtherProcess,
&parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content compositor bridge: " << hexa(int(rv));
return false;
}
if (mGPUChild) {
mGPUChild->SendNewContentImageBridge(Move(parentPipe));
} else {
if (!ImageBridgeParent::CreateForContent(Move(parentPipe))) {
return false;
}
}
*aOutEndpoint = Move(childPipe);
return true;
}
base::ProcessId
GPUProcessManager::GPUProcessPid()
{
base::ProcessId gpuPid = mGPUChild
? mGPUChild->OtherPid()
: -1;
return gpuPid;
}
void
GPUProcessManager::CreateContentVideoDecoderManager(base::ProcessId aOtherProcess,
ipc::Endpoint<dom::PVideoDecoderManagerChild>* aOutEndpoint)
{
if (!mGPUChild || !MediaPrefs::PDMUseGPUDecoder()) {
return;
}
ipc::Endpoint<dom::PVideoDecoderManagerParent> parentPipe;
ipc::Endpoint<dom::PVideoDecoderManagerChild> childPipe;
nsresult rv = dom::PVideoDecoderManager::CreateEndpoints(
mGPUChild->OtherPid(),
aOtherProcess,
&parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content video decoder: " << hexa(int(rv));
return;
}
mGPUChild->SendNewContentVideoDecoderManager(Move(parentPipe));
*aOutEndpoint = Move(childPipe);
return;
}
already_AddRefed<IAPZCTreeManager>
GPUProcessManager::GetAPZCTreeManagerForLayers(uint64_t aLayersId)
{
return CompositorBridgeParent::GetAPZCTreeManager(aLayersId);
}
void
GPUProcessManager::MapLayerTreeId(uint64_t aLayersId, base::ProcessId aOwningId)
{
LayerTreeOwnerTracker::Get()->Map(aLayersId, aOwningId);
if (mGPUChild) {
AutoTArray<LayerTreeIdMapping, 1> mappings;
mappings.AppendElement(LayerTreeIdMapping(aLayersId, aOwningId));
mGPUChild->SendAddLayerTreeIdMapping(mappings);
}
}
void
GPUProcessManager::UnmapLayerTreeId(uint64_t aLayersId, base::ProcessId aOwningId)
{
LayerTreeOwnerTracker::Get()->Unmap(aLayersId, aOwningId);
if (mGPUChild) {
mGPUChild->SendRemoveLayerTreeIdMapping(LayerTreeIdMapping(aLayersId, aOwningId));
return;
}
CompositorBridgeParent::DeallocateLayerTreeId(aLayersId);
}
bool
GPUProcessManager::IsLayerTreeIdMapped(uint64_t aLayersId, base::ProcessId aRequestingId)
{
return LayerTreeOwnerTracker::Get()->IsMapped(aLayersId, aRequestingId);
}
uint64_t
GPUProcessManager::AllocateLayerTreeId()
{
MOZ_ASSERT(NS_IsMainThread());
return ++mNextLayerTreeId;
}
void
GPUProcessManager::EnsureVsyncIOThread()
{
if (mVsyncIOThread) {
return;
}
mVsyncIOThread = new VsyncIOThreadHolder();
MOZ_RELEASE_ASSERT(mVsyncIOThread->Start());
}
void
GPUProcessManager::ShutdownVsyncIOThread()
{
mVsyncIOThread = nullptr;
}
void
GPUProcessManager::RegisterSession(RemoteCompositorSession* aSession)
{
mRemoteSessions.AppendElement(aSession);
}
void
GPUProcessManager::UnregisterSession(RemoteCompositorSession* aSession)
{
mRemoteSessions.RemoveElement(aSession);
}
void
GPUProcessManager::AddListener(GPUProcessListener* aListener)
{
mListeners.AppendElement(aListener);
}
void
GPUProcessManager::RemoveListener(GPUProcessListener* aListener)
{
mListeners.RemoveElement(aListener);
}
bool
GPUProcessManager::NotifyGpuObservers(const char* aTopic)
{
if (!mGPUChild) {
return false;
}
nsCString topic(aTopic);
mGPUChild->SendNotifyGpuObservers(topic);
return true;
}
} // namespace gfx
} // namespace mozilla