Mypal/gfx/layers/d3d9/LayerManagerD3D9Shaders.hlsl
2019-03-11 13:26:37 +03:00

243 lines
7.4 KiB
HLSL

float4x4 mLayerTransform;
float4 vRenderTargetOffset;
float4x4 mProjection;
typedef float4 rect;
rect vTextureCoords;
rect vLayerQuad;
rect vMaskQuad;
texture tex0;
sampler s2D;
sampler s2DWhite;
sampler s2DY;
sampler s2DCb;
sampler s2DCr;
sampler s2DMask;
float fLayerOpacity;
float4 fLayerColor;
row_major float3x3 mYuvColorMatrix : register(ps, c1);
struct VS_INPUT {
float4 vPosition : POSITION;
};
struct VS_OUTPUT {
float4 vPosition : POSITION;
float2 vTexCoords : TEXCOORD0;
};
struct VS_OUTPUT_MASK {
float4 vPosition : POSITION;
float2 vTexCoords : TEXCOORD0;
float3 vMaskCoords : TEXCOORD1;
};
VS_OUTPUT LayerQuadVS(const VS_INPUT aVertex)
{
VS_OUTPUT outp;
outp.vPosition = aVertex.vPosition;
// We use 4 component floats to uniquely describe a rectangle, by the structure
// of x, y, width, height. This allows us to easily generate the 4 corners
// of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
// stream source for our LayerQuad vertex shader. We do this by doing:
// Xout = x + Xin * width
// Yout = y + Yin * height
float2 position = vLayerQuad.xy;
float2 size = vLayerQuad.zw;
outp.vPosition.x = position.x + outp.vPosition.x * size.x;
outp.vPosition.y = position.y + outp.vPosition.y * size.y;
outp.vPosition = mul(mLayerTransform, outp.vPosition);
outp.vPosition.xyz /= outp.vPosition.w;
outp.vPosition = outp.vPosition - vRenderTargetOffset;
outp.vPosition.xyz *= outp.vPosition.w;
// adjust our vertices to match d3d9's pixel coordinate system
// which has pixel centers at integer locations
outp.vPosition.xy -= 0.5;
outp.vPosition = mul(mProjection, outp.vPosition);
position = vTextureCoords.xy;
size = vTextureCoords.zw;
outp.vTexCoords.x = position.x + aVertex.vPosition.x * size.x;
outp.vTexCoords.y = position.y + aVertex.vPosition.y * size.y;
return outp;
}
VS_OUTPUT_MASK LayerQuadVSMask(const VS_INPUT aVertex)
{
VS_OUTPUT_MASK outp;
float4 position = float4(0, 0, 0, 1);
// We use 4 component floats to uniquely describe a rectangle, by the structure
// of x, y, width, height. This allows us to easily generate the 4 corners
// of any rectangle from the 4 corners of the 0,0-1,1 quad that we use as the
// stream source for our LayerQuad vertex shader. We do this by doing:
// Xout = x + Xin * width
// Yout = y + Yin * height
float2 size = vLayerQuad.zw;
position.x = vLayerQuad.x + aVertex.vPosition.x * size.x;
position.y = vLayerQuad.y + aVertex.vPosition.y * size.y;
position = mul(mLayerTransform, position);
outp.vPosition.w = position.w;
outp.vPosition.xyz = position.xyz / position.w;
outp.vPosition = outp.vPosition - vRenderTargetOffset;
outp.vPosition.xyz *= outp.vPosition.w;
// adjust our vertices to match d3d9's pixel coordinate system
// which has pixel centers at integer locations
outp.vPosition.xy -= 0.5;
outp.vPosition = mul(mProjection, outp.vPosition);
// calculate the position on the mask texture
outp.vMaskCoords.x = (position.x - vMaskQuad.x) / vMaskQuad.z;
outp.vMaskCoords.y = (position.y - vMaskQuad.y) / vMaskQuad.w;
// correct for perspective correct interpolation, see comment in D3D11 shader
outp.vMaskCoords.z = 1;
outp.vMaskCoords *= position.w;
size = vTextureCoords.zw;
outp.vTexCoords.x = vTextureCoords.x + aVertex.vPosition.x * size.x;
outp.vTexCoords.y = vTextureCoords.y + aVertex.vPosition.y * size.y;
return outp;
}
float4 ComponentPass1Shader(const VS_OUTPUT aVertex) : COLOR
{
float4 src = tex2D(s2D, aVertex.vTexCoords);
float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
alphas.a = alphas.g;
return alphas * fLayerOpacity;
}
float4 ComponentPass2Shader(const VS_OUTPUT aVertex) : COLOR
{
float4 src = tex2D(s2D, aVertex.vTexCoords);
float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
src.a = alphas.g;
return src * fLayerOpacity;
}
float4 RGBAShader(const VS_OUTPUT aVertex) : COLOR
{
return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity;
}
float4 RGBShader(const VS_OUTPUT aVertex) : COLOR
{
float4 result;
result = tex2D(s2D, aVertex.vTexCoords);
result.a = 1.0;
return result * fLayerOpacity;
}
/* From Rec601:
[R] [1.1643835616438356, 0.0, 1.5960267857142858] [ Y - 16]
[G] = [1.1643835616438358, -0.3917622900949137, -0.8129676472377708] x [Cb - 128]
[B] [1.1643835616438356, 2.017232142857143, 8.862867620416422e-17] [Cr - 128]
For [0,1] instead of [0,255], and to 5 places:
[R] [1.16438, 0.00000, 1.59603] [ Y - 0.06275]
[G] = [1.16438, -0.39176, -0.81297] x [Cb - 0.50196]
[B] [1.16438, 2.01723, 0.00000] [Cr - 0.50196]
From Rec709:
[R] [1.1643835616438356, 4.2781193979771426e-17, 1.7927410714285714] [ Y - 16]
[G] = [1.1643835616438358, -0.21324861427372963, -0.532909328559444] x [Cb - 128]
[B] [1.1643835616438356, 2.1124017857142854, 0.0] [Cr - 128]
For [0,1] instead of [0,255], and to 5 places:
[R] [1.16438, 0.00000, 1.79274] [ Y - 0.06275]
[G] = [1.16438, -0.21325, -0.53291] x [Cb - 0.50196]
[B] [1.16438, 2.11240, 0.00000] [Cr - 0.50196]
*/
float4 YCbCrShader(const VS_OUTPUT aVertex) : COLOR
{
float3 yuv;
float4 color;
yuv.x = tex2D(s2DY, aVertex.vTexCoords).a - 0.06275;
yuv.y = tex2D(s2DCb, aVertex.vTexCoords).a - 0.50196;
yuv.z = tex2D(s2DCr, aVertex.vTexCoords).a - 0.50196;
color.rgb = mul(mYuvColorMatrix, yuv);
color.a = 1.0f;
return color * fLayerOpacity;
}
float4 SolidColorShader(const VS_OUTPUT aVertex) : COLOR
{
return fLayerColor;
}
float4 ComponentPass1ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float4 src = tex2D(s2D, aVertex.vTexCoords);
float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
alphas.a = alphas.g;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return alphas * fLayerOpacity * mask;
}
float4 ComponentPass2ShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float4 src = tex2D(s2D, aVertex.vTexCoords);
float4 alphas = 1.0 - tex2D(s2DWhite, aVertex.vTexCoords) + src;
src.a = alphas.g;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return src * fLayerOpacity * mask;
}
float4 RGBAShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return tex2D(s2D, aVertex.vTexCoords) * fLayerOpacity * mask;
}
float4 RGBShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float4 result;
result = tex2D(s2D, aVertex.vTexCoords);
result.a = 1.0;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return result * fLayerOpacity * mask;
}
float4 YCbCrShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float3 yuv;
float4 color;
yuv.x = tex2D(s2DY, aVertex.vTexCoords).a - 0.06275;
yuv.y = tex2D(s2DCb, aVertex.vTexCoords).a - 0.50196;
yuv.z = tex2D(s2DCr, aVertex.vTexCoords).a - 0.50196;
color.rgb = mul((float3x3)mYuvColorMatrix, yuv);
color.a = 1.0f;
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return color * fLayerOpacity * mask;
}
float4 SolidColorShaderMask(const VS_OUTPUT_MASK aVertex) : COLOR
{
float2 maskCoords = aVertex.vMaskCoords.xy / aVertex.vMaskCoords.z;
float mask = tex2D(s2DMask, maskCoords).a;
return fLayerColor * mask;
}