Mypal/netwerk/base/Predictor.cpp

2528 lines
80 KiB
C++

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include <algorithm>
#include "Predictor.h"
#include "nsAppDirectoryServiceDefs.h"
#include "nsICacheStorage.h"
#include "nsICacheStorageService.h"
#include "nsICachingChannel.h"
#include "nsICancelable.h"
#include "nsIChannel.h"
#include "nsContentUtils.h"
#include "nsIDNSService.h"
#include "nsIDocument.h"
#include "nsIFile.h"
#include "nsIHttpChannel.h"
#include "nsIInputStream.h"
#include "nsIIOService.h"
#include "nsILoadContext.h"
#include "nsILoadContextInfo.h"
#include "nsILoadGroup.h"
#include "nsINetworkPredictorVerifier.h"
#include "nsIObserverService.h"
#include "nsIPrefBranch.h"
#include "nsIPrefService.h"
#include "nsISpeculativeConnect.h"
#include "nsITimer.h"
#include "nsIURI.h"
#include "nsNetUtil.h"
#include "nsServiceManagerUtils.h"
#include "nsStreamUtils.h"
#include "nsString.h"
#include "nsThreadUtils.h"
#include "nsHttpRequestHead.h"
#include "mozilla/Logging.h"
#include "mozilla/Preferences.h"
#include "mozilla/Telemetry.h"
#include "mozilla/net/NeckoCommon.h"
#include "mozilla/net/NeckoParent.h"
#include "LoadContextInfo.h"
#include "mozilla/ipc/URIUtils.h"
#include "SerializedLoadContext.h"
#include "mozilla/net/NeckoChild.h"
#include "mozilla/dom/ContentParent.h"
using namespace mozilla;
using namespace mozilla::dom;
namespace mozilla {
namespace net {
Predictor *Predictor::sSelf = nullptr;
static LazyLogModule gPredictorLog("NetworkPredictor");
#define PREDICTOR_LOG(args) MOZ_LOG(gPredictorLog, mozilla::LogLevel::Debug, args)
#define RETURN_IF_FAILED(_rv) \
do { \
if (NS_FAILED(_rv)) { \
return; \
} \
} while (0)
#define NOW_IN_SECONDS() static_cast<uint32_t>(PR_Now() / PR_USEC_PER_SEC)
static const char PREDICTOR_ENABLED_PREF[] = "network.predictor.enabled";
static const char PREDICTOR_SSL_HOVER_PREF[] = "network.predictor.enable-hover-on-ssl";
static const char PREDICTOR_PREFETCH_PREF[] = "network.predictor.enable-prefetch";
static const char PREDICTOR_PAGE_DELTA_DAY_PREF[] =
"network.predictor.page-degradation.day";
static const int32_t PREDICTOR_PAGE_DELTA_DAY_DEFAULT = 0;
static const char PREDICTOR_PAGE_DELTA_WEEK_PREF[] =
"network.predictor.page-degradation.week";
static const int32_t PREDICTOR_PAGE_DELTA_WEEK_DEFAULT = 5;
static const char PREDICTOR_PAGE_DELTA_MONTH_PREF[] =
"network.predictor.page-degradation.month";
static const int32_t PREDICTOR_PAGE_DELTA_MONTH_DEFAULT = 10;
static const char PREDICTOR_PAGE_DELTA_YEAR_PREF[] =
"network.predictor.page-degradation.year";
static const int32_t PREDICTOR_PAGE_DELTA_YEAR_DEFAULT = 25;
static const char PREDICTOR_PAGE_DELTA_MAX_PREF[] =
"network.predictor.page-degradation.max";
static const int32_t PREDICTOR_PAGE_DELTA_MAX_DEFAULT = 50;
static const char PREDICTOR_SUB_DELTA_DAY_PREF[] =
"network.predictor.subresource-degradation.day";
static const int32_t PREDICTOR_SUB_DELTA_DAY_DEFAULT = 1;
static const char PREDICTOR_SUB_DELTA_WEEK_PREF[] =
"network.predictor.subresource-degradation.week";
static const int32_t PREDICTOR_SUB_DELTA_WEEK_DEFAULT = 10;
static const char PREDICTOR_SUB_DELTA_MONTH_PREF[] =
"network.predictor.subresource-degradation.month";
static const int32_t PREDICTOR_SUB_DELTA_MONTH_DEFAULT = 25;
static const char PREDICTOR_SUB_DELTA_YEAR_PREF[] =
"network.predictor.subresource-degradation.year";
static const int32_t PREDICTOR_SUB_DELTA_YEAR_DEFAULT = 50;
static const char PREDICTOR_SUB_DELTA_MAX_PREF[] =
"network.predictor.subresource-degradation.max";
static const int32_t PREDICTOR_SUB_DELTA_MAX_DEFAULT = 100;
static const char PREDICTOR_PREFETCH_ROLLING_LOAD_PREF[] =
"network.predictor.prefetch-rolling-load-count";
static const int32_t PREFETCH_ROLLING_LOAD_DEFAULT = 10;
static const char PREDICTOR_PREFETCH_MIN_PREF[] =
"network.predictor.prefetch-min-confidence";
static const int32_t PREFETCH_MIN_DEFAULT = 100;
static const char PREDICTOR_PRECONNECT_MIN_PREF[] =
"network.predictor.preconnect-min-confidence";
static const int32_t PRECONNECT_MIN_DEFAULT = 90;
static const char PREDICTOR_PRERESOLVE_MIN_PREF[] =
"network.predictor.preresolve-min-confidence";
static const int32_t PRERESOLVE_MIN_DEFAULT = 60;
static const char PREDICTOR_REDIRECT_LIKELY_PREF[] =
"network.predictor.redirect-likely-confidence";
static const int32_t REDIRECT_LIKELY_DEFAULT = 75;
static const char PREDICTOR_PREFETCH_FORCE_VALID_PREF[] =
"network.predictor.prefetch-force-valid-for";
static const int32_t PREFETCH_FORCE_VALID_DEFAULT = 10;
static const char PREDICTOR_MAX_RESOURCES_PREF[] =
"network.predictor.max-resources-per-entry";
static const uint32_t PREDICTOR_MAX_RESOURCES_DEFAULT = 100;
// This is selected in concert with max-resources-per-entry to keep memory usage
// low-ish. The default of the combo of the two is ~50k
static const char PREDICTOR_MAX_URI_LENGTH_PREF[] =
"network.predictor.max-uri-length";
static const uint32_t PREDICTOR_MAX_URI_LENGTH_DEFAULT = 500;
static const char PREDICTOR_DOING_TESTS_PREF[] = "network.predictor.doing-tests";
static const char PREDICTOR_CLEANED_UP_PREF[] = "network.predictor.cleaned-up";
// All these time values are in sec
static const uint32_t ONE_DAY = 86400U;
static const uint32_t ONE_WEEK = 7U * ONE_DAY;
static const uint32_t ONE_MONTH = 30U * ONE_DAY;
static const uint32_t ONE_YEAR = 365U * ONE_DAY;
static const uint32_t STARTUP_WINDOW = 5U * 60U; // 5min
// Version of metadata entries we expect
static const uint32_t METADATA_VERSION = 1;
// Flags available in entries
// FLAG_PREFETCHABLE - we have determined that this item is eligible for prefetch
static const uint32_t FLAG_PREFETCHABLE = 1 << 0;
// We save 12 bits in the "flags" section of our metadata for actual flags, the
// rest are to keep track of a rolling count of which loads a resource has been
// used on to determine if we can prefetch that resource or not;
static const uint8_t kRollingLoadOffset = 12;
static const int32_t kMaxPrefetchRollingLoadCount = 20;
static const uint32_t kFlagsMask = ((1 << kRollingLoadOffset) - 1);
// ID Extensions for cache entries
#define PREDICTOR_ORIGIN_EXTENSION "predictor-origin"
// Get the full origin (scheme, host, port) out of a URI (maybe should be part
// of nsIURI instead?)
static nsresult
ExtractOrigin(nsIURI *uri, nsIURI **originUri, nsIIOService *ioService)
{
nsAutoCString s;
s.Truncate();
nsresult rv = nsContentUtils::GetASCIIOrigin(uri, s);
NS_ENSURE_SUCCESS(rv, rv);
return NS_NewURI(originUri, s, nullptr, nullptr, ioService);
}
// All URIs we get passed *must* be http or https if they're not null. This
// helps ensure that.
static bool
IsNullOrHttp(nsIURI *uri)
{
if (!uri) {
return true;
}
bool isHTTP = false;
uri->SchemeIs("http", &isHTTP);
if (!isHTTP) {
uri->SchemeIs("https", &isHTTP);
}
return isHTTP;
}
// Listener for the speculative DNS requests we'll fire off, which just ignores
// the result (since we're just trying to warm the cache). This also exists to
// reduce round-trips to the main thread, by being something threadsafe the
// Predictor can use.
NS_IMPL_ISUPPORTS(Predictor::DNSListener, nsIDNSListener);
NS_IMETHODIMP
Predictor::DNSListener::OnLookupComplete(nsICancelable *request,
nsIDNSRecord *rec,
nsresult status)
{
return NS_OK;
}
// Class to proxy important information from the initial predictor call through
// the cache API and back into the internals of the predictor. We can't use the
// predictor itself, as it may have multiple actions in-flight, and each action
// has different parameters.
NS_IMPL_ISUPPORTS(Predictor::Action, nsICacheEntryOpenCallback);
Predictor::Action::Action(bool fullUri, bool predict,
Predictor::Reason reason,
nsIURI *targetURI, nsIURI *sourceURI,
nsINetworkPredictorVerifier *verifier,
Predictor *predictor)
:mFullUri(fullUri)
,mPredict(predict)
,mTargetURI(targetURI)
,mSourceURI(sourceURI)
,mVerifier(verifier)
,mStackCount(0)
,mPredictor(predictor)
{
mStartTime = TimeStamp::Now();
if (mPredict) {
mPredictReason = reason.mPredict;
} else {
mLearnReason = reason.mLearn;
}
}
Predictor::Action::Action(bool fullUri, bool predict,
Predictor::Reason reason,
nsIURI *targetURI, nsIURI *sourceURI,
nsINetworkPredictorVerifier *verifier,
Predictor *predictor, uint8_t stackCount)
:mFullUri(fullUri)
,mPredict(predict)
,mTargetURI(targetURI)
,mSourceURI(sourceURI)
,mVerifier(verifier)
,mStackCount(stackCount)
,mPredictor(predictor)
{
mStartTime = TimeStamp::Now();
if (mPredict) {
mPredictReason = reason.mPredict;
} else {
mLearnReason = reason.mLearn;
}
}
Predictor::Action::~Action()
{ }
NS_IMETHODIMP
Predictor::Action::OnCacheEntryCheck(nsICacheEntry *entry,
nsIApplicationCache *appCache,
uint32_t *result)
{
*result = nsICacheEntryOpenCallback::ENTRY_WANTED;
return NS_OK;
}
NS_IMETHODIMP
Predictor::Action::OnCacheEntryAvailable(nsICacheEntry *entry, bool isNew,
nsIApplicationCache *appCache,
nsresult result)
{
MOZ_ASSERT(NS_IsMainThread(), "Got cache entry off main thread!");
nsAutoCString targetURI, sourceURI;
mTargetURI->GetAsciiSpec(targetURI);
if (mSourceURI) {
mSourceURI->GetAsciiSpec(sourceURI);
}
PREDICTOR_LOG(("OnCacheEntryAvailable %p called. entry=%p mFullUri=%d mPredict=%d "
"mPredictReason=%d mLearnReason=%d mTargetURI=%s "
"mSourceURI=%s mStackCount=%d isNew=%d result=0x%08x",
this, entry, mFullUri, mPredict, mPredictReason, mLearnReason,
targetURI.get(), sourceURI.get(), mStackCount,
isNew, result));
if (NS_FAILED(result)) {
PREDICTOR_LOG(("OnCacheEntryAvailable %p FAILED to get cache entry (0x%08X). "
"Aborting.", this, result));
return NS_OK;
}
if (!mPredict) {
mPredictor->LearnInternal(mLearnReason, entry, isNew, mFullUri, mTargetURI,
mSourceURI);
}
return NS_OK;
}
NS_IMPL_ISUPPORTS(Predictor,
nsINetworkPredictor,
nsIObserver,
nsISpeculativeConnectionOverrider,
nsIInterfaceRequestor,
nsICacheEntryMetaDataVisitor,
nsINetworkPredictorVerifier)
Predictor::Predictor()
:mInitialized(false)
,mEnabled(true)
,mEnableHoverOnSSL(false)
,mEnablePrefetch(true)
,mPageDegradationDay(PREDICTOR_PAGE_DELTA_DAY_DEFAULT)
,mPageDegradationWeek(PREDICTOR_PAGE_DELTA_WEEK_DEFAULT)
,mPageDegradationMonth(PREDICTOR_PAGE_DELTA_MONTH_DEFAULT)
,mPageDegradationYear(PREDICTOR_PAGE_DELTA_YEAR_DEFAULT)
,mPageDegradationMax(PREDICTOR_PAGE_DELTA_MAX_DEFAULT)
,mSubresourceDegradationDay(PREDICTOR_SUB_DELTA_DAY_DEFAULT)
,mSubresourceDegradationWeek(PREDICTOR_SUB_DELTA_WEEK_DEFAULT)
,mSubresourceDegradationMonth(PREDICTOR_SUB_DELTA_MONTH_DEFAULT)
,mSubresourceDegradationYear(PREDICTOR_SUB_DELTA_YEAR_DEFAULT)
,mSubresourceDegradationMax(PREDICTOR_SUB_DELTA_MAX_DEFAULT)
,mPrefetchRollingLoadCount(PREFETCH_ROLLING_LOAD_DEFAULT)
,mPrefetchMinConfidence(PREFETCH_MIN_DEFAULT)
,mPreconnectMinConfidence(PRECONNECT_MIN_DEFAULT)
,mPreresolveMinConfidence(PRERESOLVE_MIN_DEFAULT)
,mRedirectLikelyConfidence(REDIRECT_LIKELY_DEFAULT)
,mPrefetchForceValidFor(PREFETCH_FORCE_VALID_DEFAULT)
,mMaxResourcesPerEntry(PREDICTOR_MAX_RESOURCES_DEFAULT)
,mStartupCount(1)
,mMaxURILength(PREDICTOR_MAX_URI_LENGTH_DEFAULT)
,mDoingTests(false)
{
MOZ_ASSERT(!sSelf, "multiple Predictor instances!");
sSelf = this;
}
Predictor::~Predictor()
{
if (mInitialized)
Shutdown();
sSelf = nullptr;
}
// Predictor::nsIObserver
nsresult
Predictor::InstallObserver()
{
MOZ_ASSERT(NS_IsMainThread(), "Installing observer off main thread");
nsresult rv = NS_OK;
nsCOMPtr<nsIObserverService> obs =
mozilla::services::GetObserverService();
if (!obs) {
return NS_ERROR_NOT_AVAILABLE;
}
rv = obs->AddObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID, false);
NS_ENSURE_SUCCESS(rv, rv);
Preferences::AddBoolVarCache(&mEnabled, PREDICTOR_ENABLED_PREF, true);
Preferences::AddBoolVarCache(&mEnableHoverOnSSL,
PREDICTOR_SSL_HOVER_PREF, false);
Preferences::AddBoolVarCache(&mEnablePrefetch, PREDICTOR_PREFETCH_PREF, true);
Preferences::AddIntVarCache(&mPageDegradationDay,
PREDICTOR_PAGE_DELTA_DAY_PREF,
PREDICTOR_PAGE_DELTA_DAY_DEFAULT);
Preferences::AddIntVarCache(&mPageDegradationWeek,
PREDICTOR_PAGE_DELTA_WEEK_PREF,
PREDICTOR_PAGE_DELTA_WEEK_DEFAULT);
Preferences::AddIntVarCache(&mPageDegradationMonth,
PREDICTOR_PAGE_DELTA_MONTH_PREF,
PREDICTOR_PAGE_DELTA_MONTH_DEFAULT);
Preferences::AddIntVarCache(&mPageDegradationYear,
PREDICTOR_PAGE_DELTA_YEAR_PREF,
PREDICTOR_PAGE_DELTA_YEAR_DEFAULT);
Preferences::AddIntVarCache(&mPageDegradationMax,
PREDICTOR_PAGE_DELTA_MAX_PREF,
PREDICTOR_PAGE_DELTA_MAX_DEFAULT);
Preferences::AddIntVarCache(&mSubresourceDegradationDay,
PREDICTOR_SUB_DELTA_DAY_PREF,
PREDICTOR_SUB_DELTA_DAY_DEFAULT);
Preferences::AddIntVarCache(&mSubresourceDegradationWeek,
PREDICTOR_SUB_DELTA_WEEK_PREF,
PREDICTOR_SUB_DELTA_WEEK_DEFAULT);
Preferences::AddIntVarCache(&mSubresourceDegradationMonth,
PREDICTOR_SUB_DELTA_MONTH_PREF,
PREDICTOR_SUB_DELTA_MONTH_DEFAULT);
Preferences::AddIntVarCache(&mSubresourceDegradationYear,
PREDICTOR_SUB_DELTA_YEAR_PREF,
PREDICTOR_SUB_DELTA_YEAR_DEFAULT);
Preferences::AddIntVarCache(&mSubresourceDegradationMax,
PREDICTOR_SUB_DELTA_MAX_PREF,
PREDICTOR_SUB_DELTA_MAX_DEFAULT);
Preferences::AddIntVarCache(&mPrefetchRollingLoadCount,
PREDICTOR_PREFETCH_ROLLING_LOAD_PREF,
PREFETCH_ROLLING_LOAD_DEFAULT);
Preferences::AddIntVarCache(&mPrefetchMinConfidence,
PREDICTOR_PREFETCH_MIN_PREF,
PREFETCH_MIN_DEFAULT);
Preferences::AddIntVarCache(&mPreconnectMinConfidence,
PREDICTOR_PRECONNECT_MIN_PREF,
PRECONNECT_MIN_DEFAULT);
Preferences::AddIntVarCache(&mPreresolveMinConfidence,
PREDICTOR_PRERESOLVE_MIN_PREF,
PRERESOLVE_MIN_DEFAULT);
Preferences::AddIntVarCache(&mRedirectLikelyConfidence,
PREDICTOR_REDIRECT_LIKELY_PREF,
REDIRECT_LIKELY_DEFAULT);
Preferences::AddIntVarCache(&mPrefetchForceValidFor,
PREDICTOR_PREFETCH_FORCE_VALID_PREF,
PREFETCH_FORCE_VALID_DEFAULT);
Preferences::AddIntVarCache(&mMaxResourcesPerEntry,
PREDICTOR_MAX_RESOURCES_PREF,
PREDICTOR_MAX_RESOURCES_DEFAULT);
Preferences::AddBoolVarCache(&mCleanedUp, PREDICTOR_CLEANED_UP_PREF, false);
Preferences::AddUintVarCache(&mMaxURILength, PREDICTOR_MAX_URI_LENGTH_PREF,
PREDICTOR_MAX_URI_LENGTH_DEFAULT);
Preferences::AddBoolVarCache(&mDoingTests, PREDICTOR_DOING_TESTS_PREF, false);
if (!mCleanedUp) {
mCleanupTimer = do_CreateInstance("@mozilla.org/timer;1");
mCleanupTimer->Init(this, 60 * 1000, nsITimer::TYPE_ONE_SHOT);
}
return rv;
}
void
Predictor::RemoveObserver()
{
MOZ_ASSERT(NS_IsMainThread(), "Removing observer off main thread");
nsCOMPtr<nsIObserverService> obs =
mozilla::services::GetObserverService();
if (obs) {
obs->RemoveObserver(this, NS_XPCOM_SHUTDOWN_OBSERVER_ID);
}
if (mCleanupTimer) {
mCleanupTimer->Cancel();
mCleanupTimer = nullptr;
}
}
NS_IMETHODIMP
Predictor::Observe(nsISupports *subject, const char *topic,
const char16_t *data_unicode)
{
nsresult rv = NS_OK;
MOZ_ASSERT(NS_IsMainThread(),
"Predictor observing something off main thread!");
if (!strcmp(NS_XPCOM_SHUTDOWN_OBSERVER_ID, topic)) {
Shutdown();
} else if (!strcmp("timer-callback", topic)) {
MaybeCleanupOldDBFiles();
mCleanupTimer = nullptr;
}
return rv;
}
// Predictor::nsISpeculativeConnectionOverrider
NS_IMETHODIMP
Predictor::GetIgnoreIdle(bool *ignoreIdle)
{
*ignoreIdle = true;
return NS_OK;
}
NS_IMETHODIMP
Predictor::GetParallelSpeculativeConnectLimit(
uint32_t *parallelSpeculativeConnectLimit)
{
*parallelSpeculativeConnectLimit = 6;
return NS_OK;
}
NS_IMETHODIMP
Predictor::GetIsFromPredictor(bool *isFromPredictor)
{
*isFromPredictor = true;
return NS_OK;
}
NS_IMETHODIMP
Predictor::GetAllow1918(bool *allow1918)
{
*allow1918 = false;
return NS_OK;
}
// Predictor::nsIInterfaceRequestor
NS_IMETHODIMP
Predictor::GetInterface(const nsIID &iid, void **result)
{
return QueryInterface(iid, result);
}
// Predictor::nsICacheEntryMetaDataVisitor
#define SEEN_META_DATA "predictor::seen"
#define RESOURCE_META_DATA "predictor::resource-count"
#define META_DATA_PREFIX "predictor::"
static bool
IsURIMetadataElement(const char *key)
{
return StringBeginsWith(nsDependentCString(key),
NS_LITERAL_CSTRING(META_DATA_PREFIX)) &&
!NS_LITERAL_CSTRING(SEEN_META_DATA).Equals(key) &&
!NS_LITERAL_CSTRING(RESOURCE_META_DATA).Equals(key);
}
nsresult
Predictor::OnMetaDataElement(const char *asciiKey, const char *asciiValue)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsURIMetadataElement(asciiKey)) {
// This isn't a bit of metadata we care about
return NS_OK;
}
nsCString key, value;
key.AssignASCII(asciiKey);
value.AssignASCII(asciiValue);
mKeysToOperateOn.AppendElement(key);
mValuesToOperateOn.AppendElement(value);
return NS_OK;
}
// Predictor::nsINetworkPredictor
nsresult
Predictor::Init()
{
MOZ_DIAGNOSTIC_ASSERT(!IsNeckoChild());
if (!NS_IsMainThread()) {
MOZ_ASSERT(false, "Predictor::Init called off the main thread!");
return NS_ERROR_UNEXPECTED;
}
nsresult rv = NS_OK;
rv = InstallObserver();
NS_ENSURE_SUCCESS(rv, rv);
mLastStartupTime = mStartupTime = NOW_IN_SECONDS();
if (!mDNSListener) {
mDNSListener = new DNSListener();
}
nsCOMPtr<nsICacheStorageService> cacheStorageService =
do_GetService("@mozilla.org/netwerk/cache-storage-service;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
RefPtr<LoadContextInfo> lci =
new LoadContextInfo(false, NeckoOriginAttributes());
rv = cacheStorageService->DiskCacheStorage(lci, false,
getter_AddRefs(mCacheDiskStorage));
NS_ENSURE_SUCCESS(rv, rv);
mIOService = do_GetService("@mozilla.org/network/io-service;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
rv = NS_NewURI(getter_AddRefs(mStartupURI),
"predictor://startup", nullptr, mIOService);
NS_ENSURE_SUCCESS(rv, rv);
mSpeculativeService = do_QueryInterface(mIOService, &rv);
NS_ENSURE_SUCCESS(rv, rv);
mDnsService = do_GetService("@mozilla.org/network/dns-service;1", &rv);
NS_ENSURE_SUCCESS(rv, rv);
mInitialized = true;
return rv;
}
namespace {
class PredictorThreadShutdownRunner : public Runnable
{
public:
PredictorThreadShutdownRunner(nsIThread *ioThread, bool success)
:mIOThread(ioThread)
,mSuccess(success)
{ }
~PredictorThreadShutdownRunner() { }
NS_IMETHOD Run() override
{
MOZ_ASSERT(NS_IsMainThread(), "Shutting down io thread off main thread!");
if (mSuccess) {
// This means the cleanup happened. Mark so we don't try in the
// future.
Preferences::SetBool(PREDICTOR_CLEANED_UP_PREF, true);
}
return mIOThread->AsyncShutdown();
}
private:
nsCOMPtr<nsIThread> mIOThread;
bool mSuccess;
};
class PredictorOldCleanupRunner : public Runnable
{
public:
PredictorOldCleanupRunner(nsIThread *ioThread, nsIFile *dbFile)
:mIOThread(ioThread)
,mDBFile(dbFile)
{ }
~PredictorOldCleanupRunner() { }
NS_IMETHOD Run() override
{
MOZ_ASSERT(!NS_IsMainThread(), "Cleaning up old files on main thread!");
nsresult rv = CheckForAndDeleteOldDBFiles();
RefPtr<PredictorThreadShutdownRunner> runner =
new PredictorThreadShutdownRunner(mIOThread, NS_SUCCEEDED(rv));
NS_DispatchToMainThread(runner);
return NS_OK;
}
private:
nsresult CheckForAndDeleteOldDBFiles()
{
nsCOMPtr<nsIFile> oldDBFile;
nsresult rv = mDBFile->GetParent(getter_AddRefs(oldDBFile));
NS_ENSURE_SUCCESS(rv, rv);
rv = oldDBFile->AppendNative(NS_LITERAL_CSTRING("seer.sqlite"));
NS_ENSURE_SUCCESS(rv, rv);
bool fileExists = false;
rv = oldDBFile->Exists(&fileExists);
NS_ENSURE_SUCCESS(rv, rv);
if (fileExists) {
rv = oldDBFile->Remove(false);
NS_ENSURE_SUCCESS(rv, rv);
}
fileExists = false;
rv = mDBFile->Exists(&fileExists);
NS_ENSURE_SUCCESS(rv, rv);
if (fileExists) {
rv = mDBFile->Remove(false);
}
return rv;
}
nsCOMPtr<nsIThread> mIOThread;
nsCOMPtr<nsIFile> mDBFile;
};
} // namespace
void
Predictor::MaybeCleanupOldDBFiles()
{
MOZ_ASSERT(NS_IsMainThread());
if (!mEnabled || mCleanedUp) {
return;
}
mCleanedUp = true;
// This is used for cleaning up junk left over from the old backend
// built on top of sqlite, if necessary.
nsCOMPtr<nsIFile> dbFile;
nsresult rv = NS_GetSpecialDirectory(NS_APP_USER_PROFILE_50_DIR,
getter_AddRefs(dbFile));
RETURN_IF_FAILED(rv);
rv = dbFile->AppendNative(NS_LITERAL_CSTRING("netpredictions.sqlite"));
RETURN_IF_FAILED(rv);
nsCOMPtr<nsIThread> ioThread;
rv = NS_NewNamedThread("NetPredictClean", getter_AddRefs(ioThread));
RETURN_IF_FAILED(rv);
RefPtr<PredictorOldCleanupRunner> runner =
new PredictorOldCleanupRunner(ioThread, dbFile);
ioThread->Dispatch(runner, NS_DISPATCH_NORMAL);
}
void
Predictor::Shutdown()
{
if (!NS_IsMainThread()) {
MOZ_ASSERT(false, "Predictor::Shutdown called off the main thread!");
return;
}
RemoveObserver();
mInitialized = false;
}
nsresult
Predictor::Create(nsISupports *aOuter, const nsIID& aIID,
void **aResult)
{
MOZ_ASSERT(NS_IsMainThread());
nsresult rv;
if (aOuter != nullptr) {
return NS_ERROR_NO_AGGREGATION;
}
RefPtr<Predictor> svc = new Predictor();
if (IsNeckoChild()) {
// Child threads only need to be call into the public interface methods
// so we don't bother with initialization
return svc->QueryInterface(aIID, aResult);
}
rv = svc->Init();
if (NS_FAILED(rv)) {
PREDICTOR_LOG(("Failed to initialize predictor, predictor will be a noop"));
}
// We treat init failure the same as the service being disabled, since this
// is all an optimization anyway. No need to freak people out. That's why we
// gladly continue on QI'ing here.
rv = svc->QueryInterface(aIID, aResult);
return rv;
}
// Called from the main thread to initiate predictive actions
NS_IMETHODIMP
Predictor::Predict(nsIURI *targetURI, nsIURI *sourceURI,
PredictorPredictReason reason, nsILoadContext *loadContext,
nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread(),
"Predictor interface methods must be called on the main thread");
PREDICTOR_LOG(("Predictor::Predict"));
if (IsNeckoChild()) {
MOZ_DIAGNOSTIC_ASSERT(gNeckoChild);
PREDICTOR_LOG((" called on child process"));
ipc::OptionalURIParams serTargetURI, serSourceURI;
SerializeURI(targetURI, serTargetURI);
SerializeURI(sourceURI, serSourceURI);
IPC::SerializedLoadContext serLoadContext;
serLoadContext.Init(loadContext);
// If two different threads are predicting concurently, this will be
// overwritten. Thankfully, we only use this in tests, which will
// overwrite mVerifier perhaps multiple times for each individual test;
// however, within each test, the multiple predict calls should have the
// same verifier.
if (verifier) {
PREDICTOR_LOG((" was given a verifier"));
mChildVerifier = verifier;
}
PREDICTOR_LOG((" forwarding to parent process"));
gNeckoChild->SendPredPredict(serTargetURI, serSourceURI,
reason, serLoadContext, verifier);
return NS_OK;
}
PREDICTOR_LOG((" called on parent process"));
if (!mInitialized) {
PREDICTOR_LOG((" not initialized"));
return NS_OK;
}
if (!mEnabled) {
PREDICTOR_LOG((" not enabled"));
return NS_OK;
}
if (loadContext && loadContext->UsePrivateBrowsing()) {
// Don't want to do anything in PB mode
PREDICTOR_LOG((" in PB mode"));
return NS_OK;
}
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
// Nothing we can do for non-HTTP[S] schemes
PREDICTOR_LOG((" got non-http[s] URI"));
return NS_OK;
}
// Ensure we've been given the appropriate arguments for the kind of
// prediction we're being asked to do
nsCOMPtr<nsIURI> uriKey = targetURI;
nsCOMPtr<nsIURI> originKey;
switch (reason) {
case nsINetworkPredictor::PREDICT_LINK:
if (!targetURI || !sourceURI) {
PREDICTOR_LOG((" link invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
// Link hover is a special case where we can predict without hitting the
// db, so let's go ahead and fire off that prediction here.
PredictForLink(targetURI, sourceURI, verifier);
return NS_OK;
case nsINetworkPredictor::PREDICT_LOAD:
if (!targetURI || sourceURI) {
PREDICTOR_LOG((" load invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
break;
case nsINetworkPredictor::PREDICT_STARTUP:
if (targetURI || sourceURI) {
PREDICTOR_LOG((" startup invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
uriKey = mStartupURI;
originKey = mStartupURI;
break;
default:
PREDICTOR_LOG((" invalid reason"));
return NS_ERROR_INVALID_ARG;
}
Predictor::Reason argReason;
argReason.mPredict = reason;
// First we open the regular cache entry, to ensure we don't gum up the works
// waiting on the less-important predictor-only cache entry
RefPtr<Predictor::Action> uriAction =
new Predictor::Action(Predictor::Action::IS_FULL_URI,
Predictor::Action::DO_PREDICT, argReason, targetURI,
nullptr, verifier, this);
nsAutoCString uriKeyStr;
uriKey->GetAsciiSpec(uriKeyStr);
PREDICTOR_LOG((" Predict uri=%s reason=%d action=%p", uriKeyStr.get(),
reason, uriAction.get()));
uint32_t openFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::OPEN_PRIORITY |
nsICacheStorage::CHECK_MULTITHREADED;
mCacheDiskStorage->AsyncOpenURI(uriKey, EmptyCString(), openFlags, uriAction);
// Now we do the origin-only (and therefore predictor-only) entry
nsCOMPtr<nsIURI> targetOrigin;
nsresult rv = ExtractOrigin(uriKey, getter_AddRefs(targetOrigin), mIOService);
NS_ENSURE_SUCCESS(rv, rv);
if (!originKey) {
originKey = targetOrigin;
}
RefPtr<Predictor::Action> originAction =
new Predictor::Action(Predictor::Action::IS_ORIGIN,
Predictor::Action::DO_PREDICT, argReason,
targetOrigin, nullptr, verifier, this);
nsAutoCString originKeyStr;
originKey->GetAsciiSpec(originKeyStr);
PREDICTOR_LOG((" Predict origin=%s reason=%d action=%p", originKeyStr.get(),
reason, originAction.get()));
openFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::CHECK_MULTITHREADED;
mCacheDiskStorage->AsyncOpenURI(originKey,
NS_LITERAL_CSTRING(PREDICTOR_ORIGIN_EXTENSION),
openFlags, originAction);
PREDICTOR_LOG((" predict returning"));
return NS_OK;
}
bool
Predictor::PredictInternal(PredictorPredictReason reason, nsICacheEntry *entry,
bool isNew, bool fullUri, nsIURI *targetURI,
nsINetworkPredictorVerifier *verifier,
uint8_t stackCount)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::PredictInternal"));
bool rv = false;
if (reason == nsINetworkPredictor::PREDICT_LOAD) {
MaybeLearnForStartup(targetURI, fullUri);
}
if (isNew) {
// nothing else we can do here
PREDICTOR_LOG((" new entry"));
return rv;
}
switch (reason) {
case nsINetworkPredictor::PREDICT_LOAD:
rv = PredictForPageload(entry, targetURI, stackCount, fullUri, verifier);
break;
case nsINetworkPredictor::PREDICT_STARTUP:
rv = PredictForStartup(entry, fullUri, verifier);
break;
default:
PREDICTOR_LOG((" invalid reason"));
MOZ_ASSERT(false, "Got unexpected value for prediction reason");
}
return rv;
}
void
Predictor::PredictForLink(nsIURI *targetURI, nsIURI *sourceURI,
nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::PredictForLink"));
if (!mSpeculativeService) {
PREDICTOR_LOG((" missing speculative service"));
return;
}
if (!mEnableHoverOnSSL) {
bool isSSL = false;
sourceURI->SchemeIs("https", &isSSL);
if (isSSL) {
// We don't want to predict from an HTTPS page, to avoid info leakage
PREDICTOR_LOG((" Not predicting for link hover - on an SSL page"));
return;
}
}
mSpeculativeService->SpeculativeConnect2(targetURI, nullptr, nullptr);
if (verifier) {
PREDICTOR_LOG((" sending verification"));
verifier->OnPredictPreconnect(targetURI);
}
}
// This is the driver for prediction based on a new pageload.
static const uint8_t MAX_PAGELOAD_DEPTH = 10;
bool
Predictor::PredictForPageload(nsICacheEntry *entry, nsIURI *targetURI,
uint8_t stackCount, bool fullUri,
nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::PredictForPageload"));
if (stackCount > MAX_PAGELOAD_DEPTH) {
PREDICTOR_LOG((" exceeded recursion depth!"));
return false;
}
uint32_t lastLoad;
nsresult rv = entry->GetLastFetched(&lastLoad);
NS_ENSURE_SUCCESS(rv, false);
int32_t globalDegradation = CalculateGlobalDegradation(lastLoad);
PREDICTOR_LOG((" globalDegradation = %d", globalDegradation));
int32_t loadCount;
rv = entry->GetFetchCount(&loadCount);
NS_ENSURE_SUCCESS(rv, false);
nsCOMPtr<nsIURI> redirectURI;
if (WouldRedirect(entry, loadCount, lastLoad, globalDegradation,
getter_AddRefs(redirectURI))) {
mPreconnects.AppendElement(redirectURI);
Predictor::Reason reason;
reason.mPredict = nsINetworkPredictor::PREDICT_LOAD;
RefPtr<Predictor::Action> redirectAction =
new Predictor::Action(Predictor::Action::IS_FULL_URI,
Predictor::Action::DO_PREDICT, reason, redirectURI,
nullptr, verifier, this, stackCount + 1);
nsAutoCString redirectUriString;
redirectURI->GetAsciiSpec(redirectUriString);
PREDICTOR_LOG((" Predict redirect uri=%s action=%p", redirectUriString.get(),
redirectAction.get()));
uint32_t openFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::OPEN_PRIORITY |
nsICacheStorage::CHECK_MULTITHREADED;
mCacheDiskStorage->AsyncOpenURI(redirectURI, EmptyCString(), openFlags,
redirectAction);
return RunPredictions(nullptr, verifier);
}
CalculatePredictions(entry, targetURI, lastLoad, loadCount, globalDegradation, fullUri);
return RunPredictions(targetURI, verifier);
}
// This is the driver for predicting at browser startup time based on pages that
// have previously been loaded close to startup.
bool
Predictor::PredictForStartup(nsICacheEntry *entry, bool fullUri,
nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::PredictForStartup"));
int32_t globalDegradation = CalculateGlobalDegradation(mLastStartupTime);
CalculatePredictions(entry, nullptr, mLastStartupTime, mStartupCount,
globalDegradation, fullUri);
return RunPredictions(nullptr, verifier);
}
// This calculates how much to degrade our confidence in our data based on
// the last time this top-level resource was loaded. This "global degradation"
// applies to *all* subresources we have associated with the top-level
// resource. This will be in addition to any reduction in confidence we have
// associated with a particular subresource.
int32_t
Predictor::CalculateGlobalDegradation(uint32_t lastLoad)
{
MOZ_ASSERT(NS_IsMainThread());
int32_t globalDegradation;
uint32_t delta = NOW_IN_SECONDS() - lastLoad;
if (delta < ONE_DAY) {
globalDegradation = mPageDegradationDay;
} else if (delta < ONE_WEEK) {
globalDegradation = mPageDegradationWeek;
} else if (delta < ONE_MONTH) {
globalDegradation = mPageDegradationMonth;
} else if (delta < ONE_YEAR) {
globalDegradation = mPageDegradationYear;
} else {
globalDegradation = mPageDegradationMax;
}
return globalDegradation;
}
// This calculates our overall confidence that a particular subresource will be
// loaded as part of a top-level load.
// @param hitCount - the number of times we have loaded this subresource as part
// of this top-level load
// @param hitsPossible - the number of times we have performed this top-level
// load
// @param lastHit - the timestamp of the last time we loaded this subresource as
// part of this top-level load
// @param lastPossible - the timestamp of the last time we performed this
// top-level load
// @param globalDegradation - the degradation for this top-level load as
// determined by CalculateGlobalDegradation
int32_t
Predictor::CalculateConfidence(uint32_t hitCount, uint32_t hitsPossible,
uint32_t lastHit, uint32_t lastPossible,
int32_t globalDegradation)
{
MOZ_ASSERT(NS_IsMainThread());
Telemetry::AutoCounter<Telemetry::PREDICTOR_PREDICTIONS_CALCULATED> predictionsCalculated;
++predictionsCalculated;
if (!hitsPossible) {
return 0;
}
int32_t baseConfidence = (hitCount * 100) / hitsPossible;
int32_t maxConfidence = 100;
int32_t confidenceDegradation = 0;
if (lastHit < lastPossible) {
// We didn't load this subresource the last time this top-level load was
// performed, so let's not bother preconnecting (at the very least).
maxConfidence = mPreconnectMinConfidence - 1;
// Now calculate how much we want to degrade our confidence based on how
// long it's been between the last time we did this top-level load and the
// last time this top-level load included this subresource.
PRTime delta = lastPossible - lastHit;
if (delta == 0) {
confidenceDegradation = 0;
} else if (delta < ONE_DAY) {
confidenceDegradation = mSubresourceDegradationDay;
} else if (delta < ONE_WEEK) {
confidenceDegradation = mSubresourceDegradationWeek;
} else if (delta < ONE_MONTH) {
confidenceDegradation = mSubresourceDegradationMonth;
} else if (delta < ONE_YEAR) {
confidenceDegradation = mSubresourceDegradationYear;
} else {
confidenceDegradation = mSubresourceDegradationMax;
maxConfidence = 0;
}
}
// Calculate our confidence and clamp it to between 0 and maxConfidence
// (<= 100)
int32_t confidence = baseConfidence - confidenceDegradation - globalDegradation;
confidence = std::max(confidence, 0);
confidence = std::min(confidence, maxConfidence);
return confidence;
}
static void
MakeMetadataEntry(const uint32_t hitCount, const uint32_t lastHit,
const uint32_t flags, nsCString &newValue)
{
newValue.Truncate();
newValue.AppendInt(METADATA_VERSION);
newValue.Append(',');
newValue.AppendInt(hitCount);
newValue.Append(',');
newValue.AppendInt(lastHit);
newValue.Append(',');
newValue.AppendInt(flags);
}
// On every page load, the rolling window gets shifted by one bit, leaving the
// lowest bit at 0, to indicate that the subresource in question has not been
// seen on the most recent page load. If, at some point later during the page load,
// the subresource is seen again, we will then set the lowest bit to 1. This is
// how we keep track of how many of the last n pageloads (for n <= 20) a particular
// subresource has been seen.
// The rolling window is kept in the upper 20 bits of the flags element of the
// metadata. This saves 12 bits for regular old flags.
void
Predictor::UpdateRollingLoadCount(nsICacheEntry *entry, const uint32_t flags,
const char *key, const uint32_t hitCount,
const uint32_t lastHit)
{
// Extract just the rolling load count from the flags, shift it to clear the
// lowest bit, and put the new value with the existing flags.
uint32_t rollingLoadCount = flags & ~kFlagsMask;
rollingLoadCount <<= 1;
uint32_t newFlags = (flags & kFlagsMask) | rollingLoadCount;
// Finally, update the metadata on the cache entry.
nsAutoCString newValue;
MakeMetadataEntry(hitCount, lastHit, newFlags, newValue);
entry->SetMetaDataElement(key, newValue.BeginReading());
}
void
Predictor::SanitizePrefs()
{
if (mPrefetchRollingLoadCount < 0) {
mPrefetchRollingLoadCount = 0;
} else if (mPrefetchRollingLoadCount > kMaxPrefetchRollingLoadCount) {
mPrefetchRollingLoadCount = kMaxPrefetchRollingLoadCount;
}
}
void
Predictor::CalculatePredictions(nsICacheEntry *entry, nsIURI *referrer,
uint32_t lastLoad, uint32_t loadCount,
int32_t globalDegradation, bool fullUri)
{
MOZ_ASSERT(NS_IsMainThread());
SanitizePrefs();
// Since the visitor gets called under a cache lock, all we do there is get
// copies of the keys/values we care about, and then do the real work here
entry->VisitMetaData(this);
nsTArray<nsCString> keysToOperateOn, valuesToOperateOn;
keysToOperateOn.SwapElements(mKeysToOperateOn);
valuesToOperateOn.SwapElements(mValuesToOperateOn);
MOZ_ASSERT(keysToOperateOn.Length() == valuesToOperateOn.Length());
for (size_t i = 0; i < keysToOperateOn.Length(); ++i) {
const char *key = keysToOperateOn[i].BeginReading();
const char *value = valuesToOperateOn[i].BeginReading();
nsCOMPtr<nsIURI> uri;
uint32_t hitCount, lastHit, flags;
if (!ParseMetaDataEntry(key, value, getter_AddRefs(uri), hitCount, lastHit, flags)) {
// This failed, get rid of it so we don't waste space
entry->SetMetaDataElement(key, nullptr);
continue;
}
int32_t confidence = CalculateConfidence(hitCount, loadCount, lastHit,
lastLoad, globalDegradation);
if (fullUri) {
UpdateRollingLoadCount(entry, flags, key, hitCount, lastHit);
}
PREDICTOR_LOG(("CalculatePredictions key=%s value=%s confidence=%d", key, value, confidence));
if (!fullUri) {
// Not full URI - don't prefetch! No sense in it!
PREDICTOR_LOG((" forcing non-cacheability - not full URI"));
flags &= ~FLAG_PREFETCHABLE;
} else if (!referrer) {
// No referrer means we can't prefetch, so pretend it's non-cacheable,
// no matter what.
PREDICTOR_LOG((" forcing non-cacheability - no referrer"));
flags &= ~FLAG_PREFETCHABLE;
} else {
uint32_t expectedRollingLoadCount = (1 << mPrefetchRollingLoadCount) - 1;
expectedRollingLoadCount <<= kRollingLoadOffset;
if ((flags & expectedRollingLoadCount) != expectedRollingLoadCount) {
PREDICTOR_LOG((" forcing non-cacheability - missed a load"));
flags &= ~FLAG_PREFETCHABLE;
}
}
PREDICTOR_LOG((" setting up prediction"));
SetupPrediction(confidence, flags, uri);
}
}
// (Maybe) adds a predictive action to the prediction runner, based on our
// calculated confidence for the subresource in question.
void
Predictor::SetupPrediction(int32_t confidence, uint32_t flags, nsIURI *uri)
{
MOZ_ASSERT(NS_IsMainThread());
nsAutoCString uriStr;
uri->GetAsciiSpec(uriStr);
PREDICTOR_LOG(("SetupPrediction mEnablePrefetch=%d mPrefetchMinConfidence=%d "
"mPreconnectMinConfidence=%d mPreresolveMinConfidence=%d "
"flags=%d confidence=%d uri=%s", mEnablePrefetch,
mPrefetchMinConfidence, mPreconnectMinConfidence,
mPreresolveMinConfidence, flags, confidence, uriStr.get()));
if (mEnablePrefetch && (flags & FLAG_PREFETCHABLE) &&
(mPrefetchRollingLoadCount || (confidence >= mPrefetchMinConfidence))) {
mPrefetches.AppendElement(uri);
} else if (confidence >= mPreconnectMinConfidence) {
mPreconnects.AppendElement(uri);
} else if (confidence >= mPreresolveMinConfidence) {
mPreresolves.AppendElement(uri);
}
}
nsresult
Predictor::Prefetch(nsIURI *uri, nsIURI *referrer,
nsINetworkPredictorVerifier *verifier)
{
nsAutoCString strUri, strReferrer;
uri->GetAsciiSpec(strUri);
referrer->GetAsciiSpec(strReferrer);
PREDICTOR_LOG(("Predictor::Prefetch uri=%s referrer=%s verifier=%p",
strUri.get(), strReferrer.get(), verifier));
nsCOMPtr<nsIChannel> channel;
nsresult rv = NS_NewChannel(getter_AddRefs(channel), uri,
nsContentUtils::GetSystemPrincipal(),
nsILoadInfo::SEC_ALLOW_CROSS_ORIGIN_DATA_IS_NULL,
nsIContentPolicy::TYPE_OTHER,
nullptr, /* aLoadGroup */
nullptr, /* aCallbacks */
nsIRequest::LOAD_BACKGROUND);
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" NS_NewChannel failed rv=0x%X", rv));
return rv;
}
nsCOMPtr<nsIHttpChannel> httpChannel;
httpChannel = do_QueryInterface(channel);
if (!httpChannel) {
PREDICTOR_LOG((" Could not get HTTP Channel from new channel!"));
return NS_ERROR_UNEXPECTED;
}
httpChannel->SetReferrer(referrer);
// XXX - set a header here to indicate this is a prefetch?
nsCOMPtr<nsIStreamListener> listener = new PrefetchListener(verifier, uri,
this);
PREDICTOR_LOG((" calling AsyncOpen2 listener=%p channel=%p", listener.get(),
channel.get()));
rv = channel->AsyncOpen2(listener);
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" AsyncOpen2 failed rv=0x%X", rv));
}
return rv;
}
// Runs predictions that have been set up.
bool
Predictor::RunPredictions(nsIURI *referrer, nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread(), "Running prediction off main thread");
PREDICTOR_LOG(("Predictor::RunPredictions"));
bool predicted = false;
uint32_t len, i;
nsTArray<nsCOMPtr<nsIURI>> prefetches, preconnects, preresolves;
prefetches.SwapElements(mPrefetches);
preconnects.SwapElements(mPreconnects);
preresolves.SwapElements(mPreresolves);
Telemetry::AutoCounter<Telemetry::PREDICTOR_TOTAL_PREDICTIONS> totalPredictions;
Telemetry::AutoCounter<Telemetry::PREDICTOR_TOTAL_PREFETCHES> totalPrefetches;
Telemetry::AutoCounter<Telemetry::PREDICTOR_TOTAL_PRECONNECTS> totalPreconnects;
Telemetry::AutoCounter<Telemetry::PREDICTOR_TOTAL_PRERESOLVES> totalPreresolves;
len = prefetches.Length();
for (i = 0; i < len; ++i) {
PREDICTOR_LOG((" doing prefetch"));
nsCOMPtr<nsIURI> uri = prefetches[i];
if (NS_SUCCEEDED(Prefetch(uri, referrer, verifier))) {
++totalPredictions;
++totalPrefetches;
predicted = true;
}
}
len = preconnects.Length();
for (i = 0; i < len; ++i) {
PREDICTOR_LOG((" doing preconnect"));
nsCOMPtr<nsIURI> uri = preconnects[i];
++totalPredictions;
++totalPreconnects;
mSpeculativeService->SpeculativeConnect2(uri, nullptr, this);
predicted = true;
if (verifier) {
PREDICTOR_LOG((" sending preconnect verification"));
verifier->OnPredictPreconnect(uri);
}
}
len = preresolves.Length();
nsCOMPtr<nsIThread> mainThread = do_GetMainThread();
for (i = 0; i < len; ++i) {
nsCOMPtr<nsIURI> uri = preresolves[i];
++totalPredictions;
++totalPreresolves;
nsAutoCString hostname;
uri->GetAsciiHost(hostname);
PREDICTOR_LOG((" doing preresolve %s", hostname.get()));
nsCOMPtr<nsICancelable> tmpCancelable;
mDnsService->AsyncResolve(hostname,
(nsIDNSService::RESOLVE_PRIORITY_MEDIUM |
nsIDNSService::RESOLVE_SPECULATE),
mDNSListener, nullptr,
getter_AddRefs(tmpCancelable));
predicted = true;
if (verifier) {
PREDICTOR_LOG((" sending preresolve verification"));
verifier->OnPredictDNS(uri);
}
}
return predicted;
}
// Find out if a top-level page is likely to redirect.
bool
Predictor::WouldRedirect(nsICacheEntry *entry, uint32_t loadCount,
uint32_t lastLoad, int32_t globalDegradation,
nsIURI **redirectURI)
{
// TODO - not doing redirects for first go around
MOZ_ASSERT(NS_IsMainThread());
return false;
}
// Called from the main thread to update the database
NS_IMETHODIMP
Predictor::Learn(nsIURI *targetURI, nsIURI *sourceURI,
PredictorLearnReason reason,
nsILoadContext *loadContext)
{
MOZ_ASSERT(NS_IsMainThread(),
"Predictor interface methods must be called on the main thread");
PREDICTOR_LOG(("Predictor::Learn"));
if (IsNeckoChild()) {
MOZ_DIAGNOSTIC_ASSERT(gNeckoChild);
PREDICTOR_LOG((" called on child process"));
ipc::URIParams serTargetURI;
SerializeURI(targetURI, serTargetURI);
ipc::OptionalURIParams serSourceURI;
SerializeURI(sourceURI, serSourceURI);
IPC::SerializedLoadContext serLoadContext;
serLoadContext.Init(loadContext);
PREDICTOR_LOG((" forwarding to parent"));
gNeckoChild->SendPredLearn(serTargetURI, serSourceURI, reason,
serLoadContext);
return NS_OK;
}
PREDICTOR_LOG((" called on parent process"));
if (!mInitialized) {
PREDICTOR_LOG((" not initialized"));
return NS_OK;
}
if (!mEnabled) {
PREDICTOR_LOG((" not enabled"));
return NS_OK;
}
if (loadContext && loadContext->UsePrivateBrowsing()) {
// Don't want to do anything in PB mode
PREDICTOR_LOG((" in PB mode"));
return NS_OK;
}
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
PREDICTOR_LOG((" got non-HTTP[S] URI"));
return NS_ERROR_INVALID_ARG;
}
nsCOMPtr<nsIURI> targetOrigin;
nsCOMPtr<nsIURI> sourceOrigin;
nsCOMPtr<nsIURI> uriKey;
nsCOMPtr<nsIURI> originKey;
nsresult rv;
switch (reason) {
case nsINetworkPredictor::LEARN_LOAD_TOPLEVEL:
if (!targetURI || sourceURI) {
PREDICTOR_LOG((" load toplevel invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
rv = ExtractOrigin(targetURI, getter_AddRefs(targetOrigin), mIOService);
NS_ENSURE_SUCCESS(rv, rv);
uriKey = targetURI;
originKey = targetOrigin;
break;
case nsINetworkPredictor::LEARN_STARTUP:
if (!targetURI || sourceURI) {
PREDICTOR_LOG((" startup invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
rv = ExtractOrigin(targetURI, getter_AddRefs(targetOrigin), mIOService);
NS_ENSURE_SUCCESS(rv, rv);
uriKey = mStartupURI;
originKey = mStartupURI;
break;
case nsINetworkPredictor::LEARN_LOAD_REDIRECT:
case nsINetworkPredictor::LEARN_LOAD_SUBRESOURCE:
if (!targetURI || !sourceURI) {
PREDICTOR_LOG((" redirect/subresource invalid URI state"));
return NS_ERROR_INVALID_ARG;
}
rv = ExtractOrigin(targetURI, getter_AddRefs(targetOrigin), mIOService);
NS_ENSURE_SUCCESS(rv, rv);
rv = ExtractOrigin(sourceURI, getter_AddRefs(sourceOrigin), mIOService);
NS_ENSURE_SUCCESS(rv, rv);
uriKey = sourceURI;
originKey = sourceOrigin;
break;
default:
PREDICTOR_LOG((" invalid reason"));
return NS_ERROR_INVALID_ARG;
}
Telemetry::AutoCounter<Telemetry::PREDICTOR_LEARN_ATTEMPTS> learnAttempts;
++learnAttempts;
Predictor::Reason argReason;
argReason.mLearn = reason;
// We always open the full uri (general cache) entry first, so we don't gum up
// the works waiting on predictor-only entries to open
RefPtr<Predictor::Action> uriAction =
new Predictor::Action(Predictor::Action::IS_FULL_URI,
Predictor::Action::DO_LEARN, argReason, targetURI,
sourceURI, nullptr, this);
nsAutoCString uriKeyStr, targetUriStr, sourceUriStr;
uriKey->GetAsciiSpec(uriKeyStr);
targetURI->GetAsciiSpec(targetUriStr);
if (sourceURI) {
sourceURI->GetAsciiSpec(sourceUriStr);
}
PREDICTOR_LOG((" Learn uriKey=%s targetURI=%s sourceURI=%s reason=%d "
"action=%p", uriKeyStr.get(), targetUriStr.get(),
sourceUriStr.get(), reason, uriAction.get()));
// For learning full URI things, we *always* open readonly and secretly, as we
// rely on actual pageloads to update the entry's metadata for us.
uint32_t uriOpenFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::CHECK_MULTITHREADED;
if (reason == nsINetworkPredictor::LEARN_LOAD_TOPLEVEL) {
// Learning for toplevel we want to open the full uri entry priority, since
// it's likely this entry will be used soon anyway, and we want this to be
// opened ASAP.
uriOpenFlags |= nsICacheStorage::OPEN_PRIORITY;
}
mCacheDiskStorage->AsyncOpenURI(uriKey, EmptyCString(), uriOpenFlags,
uriAction);
// Now we open the origin-only (and therefore predictor-only) entry
RefPtr<Predictor::Action> originAction =
new Predictor::Action(Predictor::Action::IS_ORIGIN,
Predictor::Action::DO_LEARN, argReason, targetOrigin,
sourceOrigin, nullptr, this);
nsAutoCString originKeyStr, targetOriginStr, sourceOriginStr;
originKey->GetAsciiSpec(originKeyStr);
targetOrigin->GetAsciiSpec(targetOriginStr);
if (sourceOrigin) {
sourceOrigin->GetAsciiSpec(sourceOriginStr);
}
PREDICTOR_LOG((" Learn originKey=%s targetOrigin=%s sourceOrigin=%s reason=%d "
"action=%p", originKeyStr.get(), targetOriginStr.get(),
sourceOriginStr.get(), reason, originAction.get()));
uint32_t originOpenFlags;
if (reason == nsINetworkPredictor::LEARN_LOAD_TOPLEVEL) {
// This is the only case when we want to update the 'last used' metadata on
// the cache entry we're getting. This only applies to predictor-specific
// entries.
originOpenFlags = nsICacheStorage::OPEN_NORMALLY |
nsICacheStorage::CHECK_MULTITHREADED;
} else {
originOpenFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::CHECK_MULTITHREADED;
}
mCacheDiskStorage->AsyncOpenURI(originKey,
NS_LITERAL_CSTRING(PREDICTOR_ORIGIN_EXTENSION),
originOpenFlags, originAction);
PREDICTOR_LOG(("Predictor::Learn returning"));
return NS_OK;
}
void
Predictor::LearnInternal(PredictorLearnReason reason, nsICacheEntry *entry,
bool isNew, bool fullUri, nsIURI *targetURI,
nsIURI *sourceURI)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::LearnInternal"));
nsCString junk;
if (!fullUri && reason == nsINetworkPredictor::LEARN_LOAD_TOPLEVEL &&
NS_FAILED(entry->GetMetaDataElement(SEEN_META_DATA, getter_Copies(junk)))) {
// This is an origin-only entry that we haven't seen before. Let's mark it
// as seen.
PREDICTOR_LOG((" marking new origin entry as seen"));
nsresult rv = entry->SetMetaDataElement(SEEN_META_DATA, "1");
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" failed to mark origin entry seen"));
return;
}
// Need to ensure someone else can get to the entry if necessary
entry->MetaDataReady();
return;
}
switch (reason) {
case nsINetworkPredictor::LEARN_LOAD_TOPLEVEL:
// This case only exists to be used during tests - code outside the
// predictor tests should NEVER call Learn with LEARN_LOAD_TOPLEVEL.
// The predictor xpcshell test needs this branch, however, because we
// have no real page loads in xpcshell, and this is how we fake it up
// so that all the work that normally happens behind the scenes in a
// page load can be done for testing purposes.
if (fullUri && mDoingTests) {
PREDICTOR_LOG((" WARNING - updating rolling load count. "
"If you see this outside tests, you did it wrong"));
SanitizePrefs();
// Since the visitor gets called under a cache lock, all we do there is get
// copies of the keys/values we care about, and then do the real work here
entry->VisitMetaData(this);
nsTArray<nsCString> keysToOperateOn, valuesToOperateOn;
keysToOperateOn.SwapElements(mKeysToOperateOn);
valuesToOperateOn.SwapElements(mValuesToOperateOn);
MOZ_ASSERT(keysToOperateOn.Length() == valuesToOperateOn.Length());
for (size_t i = 0; i < keysToOperateOn.Length(); ++i) {
const char *key = keysToOperateOn[i].BeginReading();
const char *value = valuesToOperateOn[i].BeginReading();
nsCOMPtr<nsIURI> uri;
uint32_t hitCount, lastHit, flags;
if (!ParseMetaDataEntry(nullptr, value, nullptr, hitCount, lastHit, flags)) {
// This failed, get rid of it so we don't waste space
entry->SetMetaDataElement(key, nullptr);
continue;
}
UpdateRollingLoadCount(entry, flags, key, hitCount, lastHit);
}
} else {
PREDICTOR_LOG((" nothing to do for toplevel"));
}
break;
case nsINetworkPredictor::LEARN_LOAD_REDIRECT:
if (fullUri) {
LearnForRedirect(entry, targetURI);
}
break;
case nsINetworkPredictor::LEARN_LOAD_SUBRESOURCE:
LearnForSubresource(entry, targetURI);
break;
case nsINetworkPredictor::LEARN_STARTUP:
LearnForStartup(entry, targetURI);
break;
default:
PREDICTOR_LOG((" unexpected reason value"));
MOZ_ASSERT(false, "Got unexpected value for learn reason!");
}
}
NS_IMPL_ISUPPORTS(Predictor::SpaceCleaner, nsICacheEntryMetaDataVisitor)
NS_IMETHODIMP
Predictor::SpaceCleaner::OnMetaDataElement(const char *key, const char *value)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsURIMetadataElement(key)) {
// This isn't a bit of metadata we care about
return NS_OK;
}
uint32_t hitCount, lastHit, flags;
bool ok = mPredictor->ParseMetaDataEntry(nullptr, value, nullptr,
hitCount, lastHit, flags);
if (!ok) {
// Couldn't parse this one, just get rid of it
nsCString nsKey;
nsKey.AssignASCII(key);
mLongKeysToDelete.AppendElement(nsKey);
return NS_OK;
}
nsCString uri(key + (sizeof(META_DATA_PREFIX) - 1));
uint32_t uriLength = uri.Length();
if (uriLength > mPredictor->mMaxURILength) {
// Default to getting rid of URIs that are too long and were put in before
// we had our limit on URI length, in order to free up some space.
nsCString nsKey;
nsKey.AssignASCII(key);
mLongKeysToDelete.AppendElement(nsKey);
return NS_OK;
}
if (!mLRUKeyToDelete || lastHit < mLRUStamp) {
mLRUKeyToDelete = key;
mLRUStamp = lastHit;
}
return NS_OK;
}
void
Predictor::SpaceCleaner::Finalize(nsICacheEntry *entry)
{
MOZ_ASSERT(NS_IsMainThread());
if (mLRUKeyToDelete) {
entry->SetMetaDataElement(mLRUKeyToDelete, nullptr);
}
for (size_t i = 0; i < mLongKeysToDelete.Length(); ++i) {
entry->SetMetaDataElement(mLongKeysToDelete[i].BeginReading(), nullptr);
}
}
// Called when a subresource has been hit from a top-level load. Uses the two
// helper functions above to update the database appropriately.
void
Predictor::LearnForSubresource(nsICacheEntry *entry, nsIURI *targetURI)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::LearnForSubresource"));
uint32_t lastLoad;
nsresult rv = entry->GetLastFetched(&lastLoad);
RETURN_IF_FAILED(rv);
int32_t loadCount;
rv = entry->GetFetchCount(&loadCount);
RETURN_IF_FAILED(rv);
nsCString key;
key.AssignLiteral(META_DATA_PREFIX);
nsCString uri;
targetURI->GetAsciiSpec(uri);
key.Append(uri);
if (uri.Length() > mMaxURILength) {
// We do this to conserve space/prevent OOMs
PREDICTOR_LOG((" uri too long!"));
entry->SetMetaDataElement(key.BeginReading(), nullptr);
return;
}
nsCString value;
rv = entry->GetMetaDataElement(key.BeginReading(), getter_Copies(value));
uint32_t hitCount, lastHit, flags;
bool isNewResource = (NS_FAILED(rv) ||
!ParseMetaDataEntry(nullptr, value.BeginReading(),
nullptr, hitCount, lastHit, flags));
int32_t resourceCount = 0;
if (isNewResource) {
// This is a new addition
PREDICTOR_LOG((" new resource"));
nsCString s;
rv = entry->GetMetaDataElement(RESOURCE_META_DATA, getter_Copies(s));
if (NS_SUCCEEDED(rv)) {
resourceCount = atoi(s.BeginReading());
}
if (resourceCount >= mMaxResourcesPerEntry) {
RefPtr<Predictor::SpaceCleaner> cleaner =
new Predictor::SpaceCleaner(this);
entry->VisitMetaData(cleaner);
cleaner->Finalize(entry);
} else {
++resourceCount;
}
nsAutoCString count;
count.AppendInt(resourceCount);
rv = entry->SetMetaDataElement(RESOURCE_META_DATA, count.BeginReading());
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" failed to update resource count"));
return;
}
hitCount = 1;
flags = 0;
} else {
PREDICTOR_LOG((" existing resource"));
hitCount = std::min(hitCount + 1, static_cast<uint32_t>(loadCount));
}
// Update the rolling load count to mark this sub-resource as seen on the
// most-recent pageload so it can be eligible for prefetch (assuming all
// the other stars align).
flags |= (1 << kRollingLoadOffset);
nsCString newValue;
MakeMetadataEntry(hitCount, lastLoad, flags, newValue);
rv = entry->SetMetaDataElement(key.BeginReading(), newValue.BeginReading());
PREDICTOR_LOG((" SetMetaDataElement -> 0x%08X", rv));
if (NS_FAILED(rv) && isNewResource) {
// Roll back the increment to the resource count we made above.
PREDICTOR_LOG((" rolling back resource count update"));
--resourceCount;
if (resourceCount == 0) {
entry->SetMetaDataElement(RESOURCE_META_DATA, nullptr);
} else {
nsAutoCString count;
count.AppendInt(resourceCount);
entry->SetMetaDataElement(RESOURCE_META_DATA, count.BeginReading());
}
}
}
// This is called when a top-level loaded ended up redirecting to a different
// URI so we can keep track of that fact.
void
Predictor::LearnForRedirect(nsICacheEntry *entry, nsIURI *targetURI)
{
MOZ_ASSERT(NS_IsMainThread());
// TODO - not doing redirects for first go around
PREDICTOR_LOG(("Predictor::LearnForRedirect"));
}
// This will add a page to our list of startup pages if it's being loaded
// before our startup window has expired.
void
Predictor::MaybeLearnForStartup(nsIURI *uri, bool fullUri)
{
MOZ_ASSERT(NS_IsMainThread());
// TODO - not doing startup for first go around
PREDICTOR_LOG(("Predictor::MaybeLearnForStartup"));
}
// Add information about a top-level load to our list of startup pages
void
Predictor::LearnForStartup(nsICacheEntry *entry, nsIURI *targetURI)
{
MOZ_ASSERT(NS_IsMainThread());
// These actually do the same set of work, just on different entries, so we
// can pass through to get the real work done here
PREDICTOR_LOG(("Predictor::LearnForStartup"));
LearnForSubresource(entry, targetURI);
}
bool
Predictor::ParseMetaDataEntry(const char *key, const char *value, nsIURI **uri,
uint32_t &hitCount, uint32_t &lastHit,
uint32_t &flags)
{
MOZ_ASSERT(NS_IsMainThread());
PREDICTOR_LOG(("Predictor::ParseMetaDataEntry key=%s value=%s",
key ? key : "", value));
const char *comma = strchr(value, ',');
if (!comma) {
PREDICTOR_LOG((" could not find first comma"));
return false;
}
uint32_t version = static_cast<uint32_t>(atoi(value));
PREDICTOR_LOG((" version -> %u", version));
if (version != METADATA_VERSION) {
PREDICTOR_LOG((" metadata version mismatch %u != %u", version,
METADATA_VERSION));
return false;
}
value = comma + 1;
comma = strchr(value, ',');
if (!comma) {
PREDICTOR_LOG((" could not find second comma"));
return false;
}
hitCount = static_cast<uint32_t>(atoi(value));
PREDICTOR_LOG((" hitCount -> %u", hitCount));
value = comma + 1;
comma = strchr(value, ',');
if (!comma) {
PREDICTOR_LOG((" could not find third comma"));
return false;
}
lastHit = static_cast<uint32_t>(atoi(value));
PREDICTOR_LOG((" lastHit -> %u", lastHit));
value = comma + 1;
flags = static_cast<uint32_t>(atoi(value));
PREDICTOR_LOG((" flags -> %u", flags));
if (key) {
const char *uriStart = key + (sizeof(META_DATA_PREFIX) - 1);
nsresult rv = NS_NewURI(uri, uriStart, nullptr, mIOService);
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" NS_NewURI returned 0x%X", rv));
return false;
}
PREDICTOR_LOG((" uri -> %s", uriStart));
}
return true;
}
NS_IMETHODIMP
Predictor::Reset()
{
MOZ_ASSERT(NS_IsMainThread(),
"Predictor interface methods must be called on the main thread");
PREDICTOR_LOG(("Predictor::Reset"));
if (IsNeckoChild()) {
MOZ_DIAGNOSTIC_ASSERT(gNeckoChild);
PREDICTOR_LOG((" forwarding to parent process"));
gNeckoChild->SendPredReset();
return NS_OK;
}
PREDICTOR_LOG((" called on parent process"));
if (!mInitialized) {
PREDICTOR_LOG((" not initialized"));
return NS_OK;
}
if (!mEnabled) {
PREDICTOR_LOG((" not enabled"));
return NS_OK;
}
RefPtr<Predictor::Resetter> reset = new Predictor::Resetter(this);
PREDICTOR_LOG((" created a resetter"));
mCacheDiskStorage->AsyncVisitStorage(reset, true);
PREDICTOR_LOG((" Cache async launched, returning now"));
return NS_OK;
}
NS_IMPL_ISUPPORTS(Predictor::Resetter,
nsICacheEntryOpenCallback,
nsICacheEntryMetaDataVisitor,
nsICacheStorageVisitor);
Predictor::Resetter::Resetter(Predictor *predictor)
:mEntriesToVisit(0)
,mPredictor(predictor)
{ }
NS_IMETHODIMP
Predictor::Resetter::OnCacheEntryCheck(nsICacheEntry *entry,
nsIApplicationCache *appCache,
uint32_t *result)
{
*result = nsICacheEntryOpenCallback::ENTRY_WANTED;
return NS_OK;
}
NS_IMETHODIMP
Predictor::Resetter::OnCacheEntryAvailable(nsICacheEntry *entry, bool isNew,
nsIApplicationCache *appCache,
nsresult result)
{
MOZ_ASSERT(NS_IsMainThread());
if (NS_FAILED(result)) {
// This can happen when we've tried to open an entry that doesn't exist for
// some non-reset operation, and then get reset shortly thereafter (as
// happens in some of our tests).
--mEntriesToVisit;
if (!mEntriesToVisit) {
Complete();
}
return NS_OK;
}
entry->VisitMetaData(this);
nsTArray<nsCString> keysToDelete;
keysToDelete.SwapElements(mKeysToDelete);
for (size_t i = 0; i < keysToDelete.Length(); ++i) {
const char *key = keysToDelete[i].BeginReading();
entry->SetMetaDataElement(key, nullptr);
}
--mEntriesToVisit;
if (!mEntriesToVisit) {
Complete();
}
return NS_OK;
}
NS_IMETHODIMP
Predictor::Resetter::OnMetaDataElement(const char *asciiKey,
const char *asciiValue)
{
MOZ_ASSERT(NS_IsMainThread());
if (!StringBeginsWith(nsDependentCString(asciiKey),
NS_LITERAL_CSTRING(META_DATA_PREFIX))) {
// Not a metadata entry we care about, carry on
return NS_OK;
}
nsCString key;
key.AssignASCII(asciiKey);
mKeysToDelete.AppendElement(key);
return NS_OK;
}
NS_IMETHODIMP
Predictor::Resetter::OnCacheStorageInfo(uint32_t entryCount, uint64_t consumption,
uint64_t capacity, nsIFile *diskDirectory)
{
MOZ_ASSERT(NS_IsMainThread());
return NS_OK;
}
NS_IMETHODIMP
Predictor::Resetter::OnCacheEntryInfo(nsIURI *uri, const nsACString &idEnhance,
int64_t dataSize, int32_t fetchCount,
uint32_t lastModifiedTime, uint32_t expirationTime,
bool aPinned)
{
MOZ_ASSERT(NS_IsMainThread());
// The predictor will only ever touch entries with no idEnhance ("") or an
// idEnhance of PREDICTOR_ORIGIN_EXTENSION, so we filter out any entries that
// don't match that to avoid doing extra work.
if (idEnhance.EqualsLiteral(PREDICTOR_ORIGIN_EXTENSION)) {
// This is an entry we own, so we can just doom it entirely
mPredictor->mCacheDiskStorage->AsyncDoomURI(uri, idEnhance, nullptr);
} else if (idEnhance.IsEmpty()) {
// This is an entry we don't own, so we have to be a little more careful and
// just get rid of our own metadata entries. Append it to an array of things
// to operate on and then do the operations later so we don't end up calling
// Complete() multiple times/too soon.
++mEntriesToVisit;
mURIsToVisit.AppendElement(uri);
}
return NS_OK;
}
NS_IMETHODIMP
Predictor::Resetter::OnCacheEntryVisitCompleted()
{
MOZ_ASSERT(NS_IsMainThread());
nsTArray<nsCOMPtr<nsIURI>> urisToVisit;
urisToVisit.SwapElements(mURIsToVisit);
MOZ_ASSERT(mEntriesToVisit == urisToVisit.Length());
if (!mEntriesToVisit) {
Complete();
return NS_OK;
}
uint32_t entriesToVisit = urisToVisit.Length();
for (uint32_t i = 0; i < entriesToVisit; ++i) {
nsCString u;
urisToVisit[i]->GetAsciiSpec(u);
mPredictor->mCacheDiskStorage->AsyncOpenURI(
urisToVisit[i], EmptyCString(),
nsICacheStorage::OPEN_READONLY | nsICacheStorage::OPEN_SECRETLY | nsICacheStorage::CHECK_MULTITHREADED,
this);
}
return NS_OK;
}
void
Predictor::Resetter::Complete()
{
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIObserverService> obs = mozilla::services::GetObserverService();
if (!obs) {
PREDICTOR_LOG(("COULD NOT GET OBSERVER SERVICE!"));
return;
}
obs->NotifyObservers(nullptr, "predictor-reset-complete", nullptr);
}
// Helper functions to make using the predictor easier from native code
static nsresult
EnsureGlobalPredictor(nsINetworkPredictor **aPredictor)
{
MOZ_ASSERT(NS_IsMainThread());
nsresult rv;
nsCOMPtr<nsINetworkPredictor> predictor =
do_GetService("@mozilla.org/network/predictor;1",
&rv);
NS_ENSURE_SUCCESS(rv, rv);
predictor.forget(aPredictor);
return NS_OK;
}
nsresult
PredictorPredict(nsIURI *targetURI, nsIURI *sourceURI,
PredictorPredictReason reason, nsILoadContext *loadContext,
nsINetworkPredictorVerifier *verifier)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
return NS_OK;
}
nsCOMPtr<nsINetworkPredictor> predictor;
nsresult rv = EnsureGlobalPredictor(getter_AddRefs(predictor));
NS_ENSURE_SUCCESS(rv, rv);
return predictor->Predict(targetURI, sourceURI, reason,
loadContext, verifier);
}
nsresult
PredictorLearn(nsIURI *targetURI, nsIURI *sourceURI,
PredictorLearnReason reason,
nsILoadContext *loadContext)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
return NS_OK;
}
nsCOMPtr<nsINetworkPredictor> predictor;
nsresult rv = EnsureGlobalPredictor(getter_AddRefs(predictor));
NS_ENSURE_SUCCESS(rv, rv);
return predictor->Learn(targetURI, sourceURI, reason, loadContext);
}
nsresult
PredictorLearn(nsIURI *targetURI, nsIURI *sourceURI,
PredictorLearnReason reason,
nsILoadGroup *loadGroup)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
return NS_OK;
}
nsCOMPtr<nsINetworkPredictor> predictor;
nsresult rv = EnsureGlobalPredictor(getter_AddRefs(predictor));
NS_ENSURE_SUCCESS(rv, rv);
nsCOMPtr<nsILoadContext> loadContext;
if (loadGroup) {
nsCOMPtr<nsIInterfaceRequestor> callbacks;
loadGroup->GetNotificationCallbacks(getter_AddRefs(callbacks));
if (callbacks) {
loadContext = do_GetInterface(callbacks);
}
}
return predictor->Learn(targetURI, sourceURI, reason, loadContext);
}
nsresult
PredictorLearn(nsIURI *targetURI, nsIURI *sourceURI,
PredictorLearnReason reason,
nsIDocument *document)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
return NS_OK;
}
nsCOMPtr<nsINetworkPredictor> predictor;
nsresult rv = EnsureGlobalPredictor(getter_AddRefs(predictor));
NS_ENSURE_SUCCESS(rv, rv);
nsCOMPtr<nsILoadContext> loadContext;
if (document) {
loadContext = document->GetLoadContext();
}
return predictor->Learn(targetURI, sourceURI, reason, loadContext);
}
nsresult
PredictorLearnRedirect(nsIURI *targetURI, nsIChannel *channel,
nsILoadContext *loadContext)
{
MOZ_ASSERT(NS_IsMainThread());
nsCOMPtr<nsIURI> sourceURI;
nsresult rv = channel->GetOriginalURI(getter_AddRefs(sourceURI));
NS_ENSURE_SUCCESS(rv, rv);
bool sameUri;
rv = targetURI->Equals(sourceURI, &sameUri);
NS_ENSURE_SUCCESS(rv, rv);
if (sameUri) {
return NS_OK;
}
if (!IsNullOrHttp(targetURI) || !IsNullOrHttp(sourceURI)) {
return NS_OK;
}
nsCOMPtr<nsINetworkPredictor> predictor;
rv = EnsureGlobalPredictor(getter_AddRefs(predictor));
NS_ENSURE_SUCCESS(rv, rv);
return predictor->Learn(targetURI, sourceURI,
nsINetworkPredictor::LEARN_LOAD_REDIRECT,
loadContext);
}
// nsINetworkPredictorVerifier
/**
* Call through to the child's verifier (only during tests)
*/
NS_IMETHODIMP
Predictor::OnPredictPrefetch(nsIURI *aURI, uint32_t httpStatus)
{
if (IsNeckoChild()) {
if (mChildVerifier) {
// Ideally, we'd assert here. But since we're slowly moving towards a
// world where we have multiple child processes, and only one child process
// will be likely to have a verifier, we have to play it safer.
return mChildVerifier->OnPredictPrefetch(aURI, httpStatus);
}
return NS_OK;
}
ipc::URIParams serURI;
SerializeURI(aURI, serURI);
for (auto* cp : ContentParent::AllProcesses(ContentParent::eLive)) {
PNeckoParent* neckoParent = SingleManagedOrNull(cp->ManagedPNeckoParent());
if (!neckoParent) {
continue;
}
if (!neckoParent->SendPredOnPredictPrefetch(serURI, httpStatus)) {
return NS_ERROR_NOT_AVAILABLE;
}
}
return NS_OK;
}
NS_IMETHODIMP
Predictor::OnPredictPreconnect(nsIURI *aURI) {
if (IsNeckoChild()) {
if (mChildVerifier) {
// Ideally, we'd assert here. But since we're slowly moving towards a
// world where we have multiple child processes, and only one child process
// will be likely to have a verifier, we have to play it safer.
return mChildVerifier->OnPredictPreconnect(aURI);
}
return NS_OK;
}
ipc::URIParams serURI;
SerializeURI(aURI, serURI);
for (auto* cp : ContentParent::AllProcesses(ContentParent::eLive)) {
PNeckoParent* neckoParent = SingleManagedOrNull(cp->ManagedPNeckoParent());
if (!neckoParent) {
continue;
}
if (!neckoParent->SendPredOnPredictPreconnect(serURI)) {
return NS_ERROR_NOT_AVAILABLE;
}
}
return NS_OK;
}
NS_IMETHODIMP
Predictor::OnPredictDNS(nsIURI *aURI) {
if (IsNeckoChild()) {
if (mChildVerifier) {
// Ideally, we'd assert here. But since we're slowly moving towards a
// world where we have multiple child processes, and only one child process
// will be likely to have a verifier, we have to play it safer.
return mChildVerifier->OnPredictDNS(aURI);
}
return NS_OK;
}
ipc::URIParams serURI;
SerializeURI(aURI, serURI);
for (auto* cp : ContentParent::AllProcesses(ContentParent::eLive)) {
PNeckoParent* neckoParent = SingleManagedOrNull(cp->ManagedPNeckoParent());
if (!neckoParent) {
continue;
}
if (!neckoParent->SendPredOnPredictDNS(serURI)) {
return NS_ERROR_NOT_AVAILABLE;
}
}
return NS_OK;
}
// Predictor::PrefetchListener
// nsISupports
NS_IMPL_ISUPPORTS(Predictor::PrefetchListener,
nsIStreamListener,
nsIRequestObserver)
// nsIRequestObserver
NS_IMETHODIMP
Predictor::PrefetchListener::OnStartRequest(nsIRequest *aRequest,
nsISupports *aContext)
{
mStartTime = TimeStamp::Now();
return NS_OK;
}
NS_IMETHODIMP
Predictor::PrefetchListener::OnStopRequest(nsIRequest *aRequest,
nsISupports *aContext,
nsresult aStatusCode)
{
PREDICTOR_LOG(("OnStopRequest this=%p aStatusCode=0x%X", this, aStatusCode));
NS_ENSURE_ARG(aRequest);
if (NS_FAILED(aStatusCode)) {
return aStatusCode;
}
nsCOMPtr<nsIHttpChannel> httpChannel = do_QueryInterface(aRequest);
if (!httpChannel) {
PREDICTOR_LOG((" Could not get HTTP Channel!"));
return NS_ERROR_UNEXPECTED;
}
nsCOMPtr<nsICachingChannel> cachingChannel = do_QueryInterface(httpChannel);
if (!cachingChannel) {
PREDICTOR_LOG((" Could not get caching channel!"));
return NS_ERROR_UNEXPECTED;
}
nsresult rv = NS_OK;
uint32_t httpStatus;
rv = httpChannel->GetResponseStatus(&httpStatus);
if (NS_SUCCEEDED(rv) && httpStatus == 200) {
rv = cachingChannel->ForceCacheEntryValidFor(mPredictor->mPrefetchForceValidFor);
PREDICTOR_LOG((" forcing entry valid for %d seconds rv=%X",
mPredictor->mPrefetchForceValidFor, rv));
} else {
rv = cachingChannel->ForceCacheEntryValidFor(0);
PREDICTOR_LOG((" removing any forced validity rv=%X", rv));
}
nsAutoCString reqName;
rv = aRequest->GetName(reqName);
if (NS_FAILED(rv)) {
reqName.AssignLiteral("<unknown>");
}
PREDICTOR_LOG((" request %s status %u", reqName.get(), httpStatus));
if (mVerifier) {
mVerifier->OnPredictPrefetch(mURI, httpStatus);
}
return rv;
}
// nsIStreamListener
NS_IMETHODIMP
Predictor::PrefetchListener::OnDataAvailable(nsIRequest *aRequest,
nsISupports *aContext,
nsIInputStream *aInputStream,
uint64_t aOffset,
const uint32_t aCount)
{
uint32_t result;
return aInputStream->ReadSegments(NS_DiscardSegment, nullptr, aCount, &result);
}
// Miscellaneous Predictor
void
Predictor::UpdateCacheability(nsIURI *sourceURI, nsIURI *targetURI,
uint32_t httpStatus,
nsHttpRequestHead &requestHead,
nsHttpResponseHead *responseHead,
nsILoadContextInfo *lci)
{
MOZ_ASSERT(NS_IsMainThread());
if (lci && lci->IsPrivate()) {
PREDICTOR_LOG(("Predictor::UpdateCacheability in PB mode - ignoring"));
return;
}
if (!sourceURI || !targetURI) {
PREDICTOR_LOG(("Predictor::UpdateCacheability missing source or target uri"));
return;
}
if (!IsNullOrHttp(sourceURI) || !IsNullOrHttp(targetURI)) {
PREDICTOR_LOG(("Predictor::UpdateCacheability non-http(s) uri"));
return;
}
RefPtr<Predictor> self = sSelf;
if (self) {
nsAutoCString method;
requestHead.Method(method);
self->UpdateCacheabilityInternal(sourceURI, targetURI, httpStatus,
method);
}
}
void
Predictor::UpdateCacheabilityInternal(nsIURI *sourceURI, nsIURI *targetURI,
uint32_t httpStatus,
const nsCString &method)
{
PREDICTOR_LOG(("Predictor::UpdateCacheability httpStatus=%u", httpStatus));
if (!mInitialized) {
PREDICTOR_LOG((" not initialized"));
return;
}
if (!mEnabled) {
PREDICTOR_LOG((" not enabled"));
return;
}
if (!mEnablePrefetch) {
PREDICTOR_LOG((" prefetch not enabled"));
return;
}
uint32_t openFlags = nsICacheStorage::OPEN_READONLY |
nsICacheStorage::OPEN_SECRETLY |
nsICacheStorage::CHECK_MULTITHREADED;
RefPtr<Predictor::CacheabilityAction> action =
new Predictor::CacheabilityAction(targetURI, httpStatus, method, this);
nsAutoCString uri;
targetURI->GetAsciiSpec(uri);
PREDICTOR_LOG((" uri=%s action=%p", uri.get(), action.get()));
mCacheDiskStorage->AsyncOpenURI(sourceURI, EmptyCString(), openFlags, action);
}
NS_IMPL_ISUPPORTS(Predictor::CacheabilityAction,
nsICacheEntryOpenCallback,
nsICacheEntryMetaDataVisitor);
NS_IMETHODIMP
Predictor::CacheabilityAction::OnCacheEntryCheck(nsICacheEntry *entry,
nsIApplicationCache *appCache,
uint32_t *result)
{
*result = nsICacheEntryOpenCallback::ENTRY_WANTED;
return NS_OK;
}
NS_IMETHODIMP
Predictor::CacheabilityAction::OnCacheEntryAvailable(nsICacheEntry *entry,
bool isNew,
nsIApplicationCache *appCache,
nsresult result)
{
MOZ_ASSERT(NS_IsMainThread());
// This is being opened read-only, so isNew should always be false
MOZ_ASSERT(!isNew);
PREDICTOR_LOG(("CacheabilityAction::OnCacheEntryAvailable this=%p", this));
if (NS_FAILED(result)) {
// Nothing to do
PREDICTOR_LOG((" nothing to do result=%X isNew=%d", result, isNew));
return NS_OK;
}
nsresult rv = entry->VisitMetaData(this);
if (NS_FAILED(rv)) {
PREDICTOR_LOG((" VisitMetaData returned %x", rv));
return NS_OK;
}
nsTArray<nsCString> keysToCheck, valuesToCheck;
keysToCheck.SwapElements(mKeysToCheck);
valuesToCheck.SwapElements(mValuesToCheck);
MOZ_ASSERT(keysToCheck.Length() == valuesToCheck.Length());
for (size_t i = 0; i < keysToCheck.Length(); ++i) {
const char *key = keysToCheck[i].BeginReading();
const char *value = valuesToCheck[i].BeginReading();
nsCOMPtr<nsIURI> uri;
uint32_t hitCount, lastHit, flags;
if (!mPredictor->ParseMetaDataEntry(key, value, getter_AddRefs(uri),
hitCount, lastHit, flags)) {
PREDICTOR_LOG((" failed to parse key=%s value=%s", key, value));
continue;
}
bool eq = false;
if (NS_SUCCEEDED(uri->Equals(mTargetURI, &eq)) && eq) {
if (mHttpStatus == 200 && mMethod.EqualsLiteral("GET")) {
PREDICTOR_LOG((" marking %s cacheable", key));
flags |= FLAG_PREFETCHABLE;
} else {
PREDICTOR_LOG((" marking %s uncacheable", key));
flags &= ~FLAG_PREFETCHABLE;
}
nsCString newValue;
MakeMetadataEntry(hitCount, lastHit, flags, newValue);
entry->SetMetaDataElement(key, newValue.BeginReading());
break;
}
}
return NS_OK;
}
NS_IMETHODIMP
Predictor::CacheabilityAction::OnMetaDataElement(const char *asciiKey,
const char *asciiValue)
{
MOZ_ASSERT(NS_IsMainThread());
if (!IsURIMetadataElement(asciiKey)) {
return NS_OK;
}
nsCString key, value;
key.AssignASCII(asciiKey);
value.AssignASCII(asciiValue);
mKeysToCheck.AppendElement(key);
mValuesToCheck.AppendElement(value);
return NS_OK;
}
} // namespace net
} // namespace mozilla