Mypal/js/src/jit/Lowering.cpp

4967 lines
155 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jit/Lowering.h"
#include "mozilla/DebugOnly.h"
#include "jit/JitSpewer.h"
#include "jit/LIR.h"
#include "jit/MIR.h"
#include "jit/MIRGraph.h"
#include "wasm/WasmSignalHandlers.h"
#include "jsobjinlines.h"
#include "jsopcodeinlines.h"
#include "jit/shared/Lowering-shared-inl.h"
using namespace js;
using namespace jit;
using mozilla::DebugOnly;
using JS::GenericNaN;
LBoxAllocation
LIRGenerator::useBoxFixedAtStart(MDefinition* mir, ValueOperand op)
{
#if defined(JS_NUNBOX32)
return useBoxFixed(mir, op.typeReg(), op.payloadReg(), true);
#elif defined(JS_PUNBOX64)
return useBoxFixed(mir, op.valueReg(), op.scratchReg(), true);
#endif
}
LBoxAllocation
LIRGenerator::useBoxAtStart(MDefinition* mir, LUse::Policy policy)
{
return useBox(mir, policy, /* useAtStart = */ true);
}
void
LIRGenerator::visitCloneLiteral(MCloneLiteral* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Object);
MOZ_ASSERT(ins->input()->type() == MIRType::Object);
LCloneLiteral* lir = new(alloc()) LCloneLiteral(useRegisterAtStart(ins->input()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitParameter(MParameter* param)
{
ptrdiff_t offset;
if (param->index() == MParameter::THIS_SLOT)
offset = THIS_FRAME_ARGSLOT;
else
offset = 1 + param->index();
LParameter* ins = new(alloc()) LParameter;
defineBox(ins, param, LDefinition::FIXED);
offset *= sizeof(Value);
#if defined(JS_NUNBOX32)
# if MOZ_BIG_ENDIAN
ins->getDef(0)->setOutput(LArgument(offset));
ins->getDef(1)->setOutput(LArgument(offset + 4));
# else
ins->getDef(0)->setOutput(LArgument(offset + 4));
ins->getDef(1)->setOutput(LArgument(offset));
# endif
#elif defined(JS_PUNBOX64)
ins->getDef(0)->setOutput(LArgument(offset));
#endif
}
void
LIRGenerator::visitCallee(MCallee* ins)
{
define(new(alloc()) LCallee(), ins);
}
void
LIRGenerator::visitIsConstructing(MIsConstructing* ins)
{
define(new(alloc()) LIsConstructing(), ins);
}
static void
TryToUseImplicitInterruptCheck(MIRGraph& graph, MBasicBlock* backedge)
{
// Implicit interrupt checks require wasm signal handlers to be installed.
if (!wasm::HaveSignalHandlers() || JitOptions.ionInterruptWithoutSignals)
return;
// To avoid triggering expensive interrupts (backedge patching) in
// requestMajorGC and requestMinorGC, use an implicit interrupt check only
// if the loop body can not trigger GC or affect GC state like the store
// buffer. We do this by checking there are no safepoints attached to LIR
// instructions inside the loop.
MBasicBlockIterator block = graph.begin(backedge->loopHeaderOfBackedge());
LInterruptCheck* check = nullptr;
while (true) {
LBlock* lir = block->lir();
for (LInstructionIterator iter = lir->begin(); iter != lir->end(); iter++) {
if (iter->isInterruptCheck()) {
if (!check) {
MOZ_ASSERT(*block == backedge->loopHeaderOfBackedge());
check = iter->toInterruptCheck();
}
continue;
}
MOZ_ASSERT_IF(iter->isPostWriteBarrierO() || iter->isPostWriteBarrierV(),
iter->safepoint());
if (iter->safepoint())
return;
}
if (*block == backedge)
break;
block++;
}
check->setImplicit();
}
void
LIRGenerator::visitGoto(MGoto* ins)
{
if (!gen->compilingWasm() && ins->block()->isLoopBackedge())
TryToUseImplicitInterruptCheck(graph, ins->block());
add(new(alloc()) LGoto(ins->target()));
}
void
LIRGenerator::visitTableSwitch(MTableSwitch* tableswitch)
{
MDefinition* opd = tableswitch->getOperand(0);
// There should be at least 1 successor. The default case!
MOZ_ASSERT(tableswitch->numSuccessors() > 0);
// If there are no cases, the default case is always taken.
if (tableswitch->numSuccessors() == 1) {
add(new(alloc()) LGoto(tableswitch->getDefault()));
return;
}
// If we don't know the type.
if (opd->type() == MIRType::Value) {
LTableSwitchV* lir = newLTableSwitchV(tableswitch);
add(lir);
return;
}
// Case indices are numeric, so other types will always go to the default case.
if (opd->type() != MIRType::Int32 && opd->type() != MIRType::Double) {
add(new(alloc()) LGoto(tableswitch->getDefault()));
return;
}
// Return an LTableSwitch, capable of handling either an integer or
// floating-point index.
LAllocation index;
LDefinition tempInt;
if (opd->type() == MIRType::Int32) {
index = useRegisterAtStart(opd);
tempInt = tempCopy(opd, 0);
} else {
index = useRegister(opd);
tempInt = temp(LDefinition::GENERAL);
}
add(newLTableSwitch(index, tempInt, tableswitch));
}
void
LIRGenerator::visitCheckOverRecursed(MCheckOverRecursed* ins)
{
LCheckOverRecursed* lir = new(alloc()) LCheckOverRecursed();
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDefVar(MDefVar* ins)
{
LDefVar* lir = new(alloc()) LDefVar(useRegisterAtStart(ins->environmentChain()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDefLexical(MDefLexical* ins)
{
LDefLexical* lir = new(alloc()) LDefLexical();
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDefFun(MDefFun* ins)
{
MDefinition* fun = ins->fun();
MOZ_ASSERT(fun->type() == MIRType::Object);
LDefFun* lir = new(alloc()) LDefFun(useRegisterAtStart(fun),
useRegisterAtStart(ins->environmentChain()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewArray(MNewArray* ins)
{
LNewArray* lir = new(alloc()) LNewArray(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewArrayCopyOnWrite(MNewArrayCopyOnWrite* ins)
{
LNewArrayCopyOnWrite* lir = new(alloc()) LNewArrayCopyOnWrite(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewArrayDynamicLength(MNewArrayDynamicLength* ins)
{
MDefinition* length = ins->length();
MOZ_ASSERT(length->type() == MIRType::Int32);
LNewArrayDynamicLength* lir = new(alloc()) LNewArrayDynamicLength(useRegister(length), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewTypedArray(MNewTypedArray* ins)
{
LNewTypedArray* lir = new(alloc()) LNewTypedArray(temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewTypedArrayDynamicLength(MNewTypedArrayDynamicLength* ins)
{
MDefinition* length = ins->length();
MOZ_ASSERT(length->type() == MIRType::Int32);
LNewTypedArrayDynamicLength* lir = new(alloc()) LNewTypedArrayDynamicLength(useRegister(length), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewObject(MNewObject* ins)
{
LNewObject* lir = new(alloc()) LNewObject(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewTypedObject(MNewTypedObject* ins)
{
LNewTypedObject* lir = new(alloc()) LNewTypedObject(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewNamedLambdaObject(MNewNamedLambdaObject* ins)
{
LNewNamedLambdaObject* lir = new(alloc()) LNewNamedLambdaObject(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewCallObject(MNewCallObject* ins)
{
LNewCallObject* lir = new(alloc()) LNewCallObject(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewSingletonCallObject(MNewSingletonCallObject* ins)
{
LNewSingletonCallObject* lir = new(alloc()) LNewSingletonCallObject(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewDerivedTypedObject(MNewDerivedTypedObject* ins)
{
LNewDerivedTypedObject* lir =
new(alloc()) LNewDerivedTypedObject(useRegisterAtStart(ins->type()),
useRegisterAtStart(ins->owner()),
useRegisterAtStart(ins->offset()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNewStringObject(MNewStringObject* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType::String);
LNewStringObject* lir = new(alloc()) LNewStringObject(useRegister(ins->input()), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitInitElem(MInitElem* ins)
{
LInitElem* lir = new(alloc()) LInitElem(useRegisterAtStart(ins->getObject()),
useBoxAtStart(ins->getId()),
useBoxAtStart(ins->getValue()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitInitElemGetterSetter(MInitElemGetterSetter* ins)
{
LInitElemGetterSetter* lir =
new(alloc()) LInitElemGetterSetter(useRegisterAtStart(ins->object()),
useBoxAtStart(ins->idValue()),
useRegisterAtStart(ins->value()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitMutateProto(MMutateProto* ins)
{
LMutateProto* lir = new(alloc()) LMutateProto(useRegisterAtStart(ins->getObject()),
useBoxAtStart(ins->getValue()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitInitProp(MInitProp* ins)
{
LInitProp* lir = new(alloc()) LInitProp(useRegisterAtStart(ins->getObject()),
useBoxAtStart(ins->getValue()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitInitPropGetterSetter(MInitPropGetterSetter* ins)
{
LInitPropGetterSetter* lir =
new(alloc()) LInitPropGetterSetter(useRegisterAtStart(ins->object()),
useRegisterAtStart(ins->value()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCreateThisWithTemplate(MCreateThisWithTemplate* ins)
{
LCreateThisWithTemplate* lir = new(alloc()) LCreateThisWithTemplate(temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCreateThisWithProto(MCreateThisWithProto* ins)
{
LCreateThisWithProto* lir =
new(alloc()) LCreateThisWithProto(useRegisterOrConstantAtStart(ins->getCallee()),
useRegisterOrConstantAtStart(ins->getNewTarget()),
useRegisterOrConstantAtStart(ins->getPrototype()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCreateThis(MCreateThis* ins)
{
LCreateThis* lir = new(alloc()) LCreateThis(useRegisterOrConstantAtStart(ins->getCallee()),
useRegisterOrConstantAtStart(ins->getNewTarget()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCreateArgumentsObject(MCreateArgumentsObject* ins)
{
LAllocation callObj = useFixedAtStart(ins->getCallObject(), CallTempReg0);
LCreateArgumentsObject* lir = new(alloc()) LCreateArgumentsObject(callObj, tempFixed(CallTempReg1),
tempFixed(CallTempReg2),
tempFixed(CallTempReg3));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitGetArgumentsObjectArg(MGetArgumentsObjectArg* ins)
{
LAllocation argsObj = useRegister(ins->getArgsObject());
LGetArgumentsObjectArg* lir = new(alloc()) LGetArgumentsObjectArg(argsObj, temp());
defineBox(lir, ins);
}
void
LIRGenerator::visitSetArgumentsObjectArg(MSetArgumentsObjectArg* ins)
{
LAllocation argsObj = useRegister(ins->getArgsObject());
LSetArgumentsObjectArg* lir =
new(alloc()) LSetArgumentsObjectArg(argsObj, useBox(ins->getValue()), temp());
add(lir, ins);
}
void
LIRGenerator::visitReturnFromCtor(MReturnFromCtor* ins)
{
LReturnFromCtor* lir = new(alloc()) LReturnFromCtor(useBox(ins->getValue()),
useRegister(ins->getObject()));
define(lir, ins);
}
void
LIRGenerator::visitComputeThis(MComputeThis* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Value);
MOZ_ASSERT(ins->input()->type() == MIRType::Value);
// Don't use useBoxAtStart because ComputeThis has a safepoint and needs to
// have its inputs in different registers than its return value so that
// they aren't clobbered.
LComputeThis* lir = new(alloc()) LComputeThis(useBox(ins->input()));
defineBox(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitArrowNewTarget(MArrowNewTarget* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Value);
MOZ_ASSERT(ins->callee()->type() == MIRType::Object);
LArrowNewTarget* lir = new(alloc()) LArrowNewTarget(useRegister(ins->callee()));
defineBox(lir, ins);
}
bool
LIRGenerator::lowerCallArguments(MCall* call)
{
uint32_t argc = call->numStackArgs();
// Align the arguments of a call such that the callee would keep the same
// alignment as the caller.
uint32_t baseSlot = 0;
if (JitStackValueAlignment > 1)
baseSlot = AlignBytes(argc, JitStackValueAlignment);
else
baseSlot = argc;
// Save the maximum number of argument, such that we can have one unique
// frame size.
if (baseSlot > maxargslots_)
maxargslots_ = baseSlot;
for (size_t i = 0; i < argc; i++) {
MDefinition* arg = call->getArg(i);
uint32_t argslot = baseSlot - i;
// Values take a slow path.
if (arg->type() == MIRType::Value) {
LStackArgV* stack = new(alloc()) LStackArgV(argslot, useBox(arg));
add(stack);
} else {
// Known types can move constant types and/or payloads.
LStackArgT* stack = new(alloc()) LStackArgT(argslot, arg->type(), useRegisterOrConstant(arg));
add(stack);
}
if (!alloc().ensureBallast())
return false;
}
return true;
}
void
LIRGenerator::visitCall(MCall* call)
{
MOZ_ASSERT(CallTempReg0 != CallTempReg1);
MOZ_ASSERT(CallTempReg0 != ArgumentsRectifierReg);
MOZ_ASSERT(CallTempReg1 != ArgumentsRectifierReg);
MOZ_ASSERT(call->getFunction()->type() == MIRType::Object);
// In case of oom, skip the rest of the allocations.
if (!lowerCallArguments(call)) {
gen->abort("OOM: LIRGenerator::visitCall");
return;
}
WrappedFunction* target = call->getSingleTarget();
LInstruction* lir;
if (call->isCallDOMNative()) {
// Call DOM functions.
MOZ_ASSERT(target && target->isNative());
Register cxReg, objReg, privReg, argsReg;
GetTempRegForIntArg(0, 0, &cxReg);
GetTempRegForIntArg(1, 0, &objReg);
GetTempRegForIntArg(2, 0, &privReg);
mozilla::DebugOnly<bool> ok = GetTempRegForIntArg(3, 0, &argsReg);
MOZ_ASSERT(ok, "How can we not have four temp registers?");
lir = new(alloc()) LCallDOMNative(tempFixed(cxReg), tempFixed(objReg),
tempFixed(privReg), tempFixed(argsReg));
} else if (target) {
// Call known functions.
if (target->isNative()) {
Register cxReg, numReg, vpReg, tmpReg;
GetTempRegForIntArg(0, 0, &cxReg);
GetTempRegForIntArg(1, 0, &numReg);
GetTempRegForIntArg(2, 0, &vpReg);
// Even though this is just a temp reg, use the same API to avoid
// register collisions.
mozilla::DebugOnly<bool> ok = GetTempRegForIntArg(3, 0, &tmpReg);
MOZ_ASSERT(ok, "How can we not have four temp registers?");
lir = new(alloc()) LCallNative(tempFixed(cxReg), tempFixed(numReg),
tempFixed(vpReg), tempFixed(tmpReg));
} else {
lir = new(alloc()) LCallKnown(useFixedAtStart(call->getFunction(), CallTempReg0),
tempFixed(CallTempReg2));
}
} else {
// Call anything, using the most generic code.
lir = new(alloc()) LCallGeneric(useFixedAtStart(call->getFunction(), CallTempReg0),
tempFixed(ArgumentsRectifierReg),
tempFixed(CallTempReg2));
}
defineReturn(lir, call);
assignSafepoint(lir, call);
}
void
LIRGenerator::visitApplyArgs(MApplyArgs* apply)
{
MOZ_ASSERT(apply->getFunction()->type() == MIRType::Object);
// Assert if we cannot build a rectifier frame.
MOZ_ASSERT(CallTempReg0 != ArgumentsRectifierReg);
MOZ_ASSERT(CallTempReg1 != ArgumentsRectifierReg);
// Assert if the return value is already erased.
MOZ_ASSERT(CallTempReg2 != JSReturnReg_Type);
MOZ_ASSERT(CallTempReg2 != JSReturnReg_Data);
LApplyArgsGeneric* lir = new(alloc()) LApplyArgsGeneric(
useFixedAtStart(apply->getFunction(), CallTempReg3),
useFixedAtStart(apply->getArgc(), CallTempReg0),
useBoxFixedAtStart(apply->getThis(), CallTempReg4, CallTempReg5),
tempFixed(CallTempReg1), // object register
tempFixed(CallTempReg2)); // stack counter register
// Bailout is needed in the case of possible non-JSFunction callee or too
// many values in the arguments array. I'm going to use NonJSFunctionCallee
// for the code even if that is not an adequate description.
assignSnapshot(lir, Bailout_NonJSFunctionCallee);
defineReturn(lir, apply);
assignSafepoint(lir, apply);
}
void
LIRGenerator::visitApplyArray(MApplyArray* apply)
{
MOZ_ASSERT(apply->getFunction()->type() == MIRType::Object);
// Assert if we cannot build a rectifier frame.
MOZ_ASSERT(CallTempReg0 != ArgumentsRectifierReg);
MOZ_ASSERT(CallTempReg1 != ArgumentsRectifierReg);
// Assert if the return value is already erased.
MOZ_ASSERT(CallTempReg2 != JSReturnReg_Type);
MOZ_ASSERT(CallTempReg2 != JSReturnReg_Data);
LApplyArrayGeneric* lir = new(alloc()) LApplyArrayGeneric(
useFixedAtStart(apply->getFunction(), CallTempReg3),
useFixedAtStart(apply->getElements(), CallTempReg0),
useBoxFixedAtStart(apply->getThis(), CallTempReg4, CallTempReg5),
tempFixed(CallTempReg1), // object register
tempFixed(CallTempReg2)); // stack counter register
// Bailout is needed in the case of possible non-JSFunction callee,
// too many values in the array, or empty space at the end of the
// array. I'm going to use NonJSFunctionCallee for the code even
// if that is not an adequate description.
assignSnapshot(lir, Bailout_NonJSFunctionCallee);
defineReturn(lir, apply);
assignSafepoint(lir, apply);
}
void
LIRGenerator::visitBail(MBail* bail)
{
LBail* lir = new(alloc()) LBail();
assignSnapshot(lir, bail->bailoutKind());
add(lir, bail);
}
void
LIRGenerator::visitUnreachable(MUnreachable* unreachable)
{
LUnreachable* lir = new(alloc()) LUnreachable();
add(lir, unreachable);
}
void
LIRGenerator::visitEncodeSnapshot(MEncodeSnapshot* mir)
{
LEncodeSnapshot* lir = new(alloc()) LEncodeSnapshot();
assignSnapshot(lir, Bailout_Inevitable);
add(lir, mir);
}
void
LIRGenerator::visitAssertFloat32(MAssertFloat32* assertion)
{
MIRType type = assertion->input()->type();
DebugOnly<bool> checkIsFloat32 = assertion->mustBeFloat32();
if (type != MIRType::Value && !JitOptions.eagerCompilation) {
MOZ_ASSERT_IF(checkIsFloat32, type == MIRType::Float32);
MOZ_ASSERT_IF(!checkIsFloat32, type != MIRType::Float32);
}
}
void
LIRGenerator::visitAssertRecoveredOnBailout(MAssertRecoveredOnBailout* assertion)
{
MOZ_CRASH("AssertRecoveredOnBailout nodes are always recovered on bailouts.");
}
void
LIRGenerator::visitGetDynamicName(MGetDynamicName* ins)
{
MDefinition* envChain = ins->getEnvironmentChain();
MOZ_ASSERT(envChain->type() == MIRType::Object);
MDefinition* name = ins->getName();
MOZ_ASSERT(name->type() == MIRType::String);
LGetDynamicName* lir = new(alloc()) LGetDynamicName(useFixedAtStart(envChain, CallTempReg0),
useFixedAtStart(name, CallTempReg1),
tempFixed(CallTempReg2),
tempFixed(CallTempReg3),
tempFixed(CallTempReg4));
assignSnapshot(lir, Bailout_DynamicNameNotFound);
defineReturn(lir, ins);
}
void
LIRGenerator::visitCallDirectEval(MCallDirectEval* ins)
{
MDefinition* envChain = ins->getEnvironmentChain();
MOZ_ASSERT(envChain->type() == MIRType::Object);
MDefinition* string = ins->getString();
MOZ_ASSERT(string->type() == MIRType::String);
MDefinition* newTargetValue = ins->getNewTargetValue();
LInstruction* lir = new(alloc()) LCallDirectEval(useRegisterAtStart(envChain),
useRegisterAtStart(string),
useBoxAtStart(newTargetValue));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
static JSOp
ReorderComparison(JSOp op, MDefinition** lhsp, MDefinition** rhsp)
{
MDefinition* lhs = *lhsp;
MDefinition* rhs = *rhsp;
if (lhs->maybeConstantValue()) {
*rhsp = lhs;
*lhsp = rhs;
return ReverseCompareOp(op);
}
return op;
}
void
LIRGenerator::visitTest(MTest* test)
{
MDefinition* opd = test->getOperand(0);
MBasicBlock* ifTrue = test->ifTrue();
MBasicBlock* ifFalse = test->ifFalse();
// String is converted to length of string in the type analysis phase (see
// TestPolicy).
MOZ_ASSERT(opd->type() != MIRType::String);
// Testing a constant.
if (MConstant* constant = opd->maybeConstantValue()) {
bool b;
if (constant->valueToBoolean(&b)) {
add(new(alloc()) LGoto(b ? ifTrue : ifFalse));
return;
}
}
if (opd->type() == MIRType::Value) {
LDefinition temp0, temp1;
if (test->operandMightEmulateUndefined()) {
temp0 = temp();
temp1 = temp();
} else {
temp0 = LDefinition::BogusTemp();
temp1 = LDefinition::BogusTemp();
}
LTestVAndBranch* lir =
new(alloc()) LTestVAndBranch(ifTrue, ifFalse, useBox(opd), tempDouble(), temp0, temp1);
add(lir, test);
return;
}
if (opd->type() == MIRType::ObjectOrNull) {
LDefinition temp0 = test->operandMightEmulateUndefined() ? temp() : LDefinition::BogusTemp();
add(new(alloc()) LTestOAndBranch(useRegister(opd), ifTrue, ifFalse, temp0), test);
return;
}
// Objects are truthy, except if it might emulate undefined.
if (opd->type() == MIRType::Object) {
if (test->operandMightEmulateUndefined())
add(new(alloc()) LTestOAndBranch(useRegister(opd), ifTrue, ifFalse, temp()), test);
else
add(new(alloc()) LGoto(ifTrue));
return;
}
// These must be explicitly sniffed out since they are constants and have
// no payload.
if (opd->type() == MIRType::Undefined || opd->type() == MIRType::Null) {
add(new(alloc()) LGoto(ifFalse));
return;
}
// All symbols are truthy.
if (opd->type() == MIRType::Symbol) {
add(new(alloc()) LGoto(ifTrue));
return;
}
// Check if the operand for this test is a compare operation. If it is, we want
// to emit an LCompare*AndBranch rather than an LTest*AndBranch, to fuse the
// compare and jump instructions.
if (opd->isCompare() && opd->isEmittedAtUses()) {
MCompare* comp = opd->toCompare();
MDefinition* left = comp->lhs();
MDefinition* right = comp->rhs();
// Try to fold the comparison so that we don't have to handle all cases.
bool result;
if (comp->tryFold(&result)) {
add(new(alloc()) LGoto(result ? ifTrue : ifFalse));
return;
}
// Emit LCompare*AndBranch.
// Compare and branch null/undefined.
// The second operand has known null/undefined type,
// so just test the first operand.
if (comp->compareType() == MCompare::Compare_Null ||
comp->compareType() == MCompare::Compare_Undefined)
{
if (left->type() == MIRType::Object || left->type() == MIRType::ObjectOrNull) {
MOZ_ASSERT(left->type() == MIRType::ObjectOrNull ||
comp->operandMightEmulateUndefined(),
"MCompare::tryFold should handle the never-emulates-undefined case");
LDefinition tmp =
comp->operandMightEmulateUndefined() ? temp() : LDefinition::BogusTemp();
LIsNullOrLikeUndefinedAndBranchT* lir =
new(alloc()) LIsNullOrLikeUndefinedAndBranchT(comp, useRegister(left),
ifTrue, ifFalse, tmp);
add(lir, test);
return;
}
LDefinition tmp, tmpToUnbox;
if (comp->operandMightEmulateUndefined()) {
tmp = temp();
tmpToUnbox = tempToUnbox();
} else {
tmp = LDefinition::BogusTemp();
tmpToUnbox = LDefinition::BogusTemp();
}
LIsNullOrLikeUndefinedAndBranchV* lir =
new(alloc()) LIsNullOrLikeUndefinedAndBranchV(comp, ifTrue, ifFalse, useBox(left),
tmp, tmpToUnbox);
add(lir, test);
return;
}
// Compare and branch booleans.
if (comp->compareType() == MCompare::Compare_Boolean) {
MOZ_ASSERT(left->type() == MIRType::Value);
MOZ_ASSERT(right->type() == MIRType::Boolean);
LCompareBAndBranch* lir = new(alloc()) LCompareBAndBranch(comp, useBox(left),
useRegisterOrConstant(right),
ifTrue, ifFalse);
add(lir, test);
return;
}
// Compare and branch Int32 or Object pointers.
if (comp->isInt32Comparison() ||
comp->compareType() == MCompare::Compare_UInt32 ||
comp->compareType() == MCompare::Compare_Object)
{
JSOp op = ReorderComparison(comp->jsop(), &left, &right);
LAllocation lhs = useRegister(left);
LAllocation rhs;
if (comp->isInt32Comparison() || comp->compareType() == MCompare::Compare_UInt32)
rhs = useAnyOrConstant(right);
else
rhs = useRegister(right);
LCompareAndBranch* lir = new(alloc()) LCompareAndBranch(comp, op, lhs, rhs,
ifTrue, ifFalse);
add(lir, test);
return;
}
// Compare and branch Int64.
if (comp->compareType() == MCompare::Compare_Int64 ||
comp->compareType() == MCompare::Compare_UInt64)
{
JSOp op = ReorderComparison(comp->jsop(), &left, &right);
LCompareI64AndBranch* lir = new(alloc()) LCompareI64AndBranch(comp, op,
useInt64Register(left),
useInt64OrConstant(right),
ifTrue, ifFalse);
add(lir, test);
return;
}
// Compare and branch doubles.
if (comp->isDoubleComparison()) {
LAllocation lhs = useRegister(left);
LAllocation rhs = useRegister(right);
LCompareDAndBranch* lir = new(alloc()) LCompareDAndBranch(comp, lhs, rhs,
ifTrue, ifFalse);
add(lir, test);
return;
}
// Compare and branch floats.
if (comp->isFloat32Comparison()) {
LAllocation lhs = useRegister(left);
LAllocation rhs = useRegister(right);
LCompareFAndBranch* lir = new(alloc()) LCompareFAndBranch(comp, lhs, rhs,
ifTrue, ifFalse);
add(lir, test);
return;
}
// Compare values.
if (comp->compareType() == MCompare::Compare_Bitwise) {
LCompareBitwiseAndBranch* lir =
new(alloc()) LCompareBitwiseAndBranch(comp, ifTrue, ifFalse,
useBoxAtStart(left),
useBoxAtStart(right));
add(lir, test);
return;
}
}
// Check if the operand for this test is a bitand operation. If it is, we want
// to emit an LBitAndAndBranch rather than an LTest*AndBranch.
if (opd->isBitAnd() && opd->isEmittedAtUses()) {
MDefinition* lhs = opd->getOperand(0);
MDefinition* rhs = opd->getOperand(1);
if (lhs->type() == MIRType::Int32 && rhs->type() == MIRType::Int32) {
ReorderCommutative(&lhs, &rhs, test);
lowerForBitAndAndBranch(new(alloc()) LBitAndAndBranch(ifTrue, ifFalse), test, lhs, rhs);
return;
}
}
if (opd->isIsObject() && opd->isEmittedAtUses()) {
MDefinition* input = opd->toIsObject()->input();
MOZ_ASSERT(input->type() == MIRType::Value);
LIsObjectAndBranch* lir = new(alloc()) LIsObjectAndBranch(ifTrue, ifFalse,
useBoxAtStart(input));
add(lir, test);
return;
}
if (opd->isIsNoIter()) {
MOZ_ASSERT(opd->isEmittedAtUses());
MDefinition* input = opd->toIsNoIter()->input();
MOZ_ASSERT(input->type() == MIRType::Value);
LIsNoIterAndBranch* lir = new(alloc()) LIsNoIterAndBranch(ifTrue, ifFalse,
useBox(input));
add(lir, test);
return;
}
switch (opd->type()) {
case MIRType::Double:
add(new(alloc()) LTestDAndBranch(useRegister(opd), ifTrue, ifFalse));
break;
case MIRType::Float32:
add(new(alloc()) LTestFAndBranch(useRegister(opd), ifTrue, ifFalse));
break;
case MIRType::Int32:
case MIRType::Boolean:
add(new(alloc()) LTestIAndBranch(useRegister(opd), ifTrue, ifFalse));
break;
case MIRType::Int64:
add(new(alloc()) LTestI64AndBranch(useInt64Register(opd), ifTrue, ifFalse));
break;
default:
MOZ_CRASH("Bad type");
}
}
void
LIRGenerator::visitGotoWithFake(MGotoWithFake* gotoWithFake)
{
add(new(alloc()) LGoto(gotoWithFake->target()));
}
void
LIRGenerator::visitFunctionDispatch(MFunctionDispatch* ins)
{
LFunctionDispatch* lir = new(alloc()) LFunctionDispatch(useRegister(ins->input()));
add(lir, ins);
}
void
LIRGenerator::visitObjectGroupDispatch(MObjectGroupDispatch* ins)
{
LObjectGroupDispatch* lir = new(alloc()) LObjectGroupDispatch(useRegister(ins->input()), temp());
add(lir, ins);
}
static inline bool
CanEmitCompareAtUses(MInstruction* ins)
{
if (!ins->canEmitAtUses())
return false;
bool foundTest = false;
for (MUseIterator iter(ins->usesBegin()); iter != ins->usesEnd(); iter++) {
MNode* node = iter->consumer();
if (!node->isDefinition())
return false;
if (!node->toDefinition()->isTest())
return false;
if (foundTest)
return false;
foundTest = true;
}
return true;
}
void
LIRGenerator::visitCompare(MCompare* comp)
{
MDefinition* left = comp->lhs();
MDefinition* right = comp->rhs();
// Try to fold the comparison so that we don't have to handle all cases.
bool result;
if (comp->tryFold(&result)) {
define(new(alloc()) LInteger(result), comp);
return;
}
// Move below the emitAtUses call if we ever implement
// LCompareSAndBranch. Doing this now wouldn't be wrong, but doesn't
// make sense and avoids confusion.
if (comp->compareType() == MCompare::Compare_String) {
LCompareS* lir = new(alloc()) LCompareS(useRegister(left), useRegister(right));
define(lir, comp);
assignSafepoint(lir, comp);
return;
}
// Strict compare between value and string
if (comp->compareType() == MCompare::Compare_StrictString) {
MOZ_ASSERT(left->type() == MIRType::Value);
MOZ_ASSERT(right->type() == MIRType::String);
LCompareStrictS* lir = new(alloc()) LCompareStrictS(useBox(left), useRegister(right),
tempToUnbox());
define(lir, comp);
assignSafepoint(lir, comp);
return;
}
// Unknown/unspecialized compare use a VM call.
if (comp->compareType() == MCompare::Compare_Unknown) {
LCompareVM* lir = new(alloc()) LCompareVM(useBoxAtStart(left), useBoxAtStart(right));
defineReturn(lir, comp);
assignSafepoint(lir, comp);
return;
}
// Sniff out if the output of this compare is used only for a branching.
// If it is, then we will emit an LCompare*AndBranch instruction in place
// of this compare and any test that uses this compare. Thus, we can
// ignore this Compare.
if (CanEmitCompareAtUses(comp)) {
emitAtUses(comp);
return;
}
// Compare Null and Undefined.
if (comp->compareType() == MCompare::Compare_Null ||
comp->compareType() == MCompare::Compare_Undefined)
{
if (left->type() == MIRType::Object || left->type() == MIRType::ObjectOrNull) {
MOZ_ASSERT(left->type() == MIRType::ObjectOrNull ||
comp->operandMightEmulateUndefined(),
"MCompare::tryFold should have folded this away");
define(new(alloc()) LIsNullOrLikeUndefinedT(useRegister(left)), comp);
return;
}
LDefinition tmp, tmpToUnbox;
if (comp->operandMightEmulateUndefined()) {
tmp = temp();
tmpToUnbox = tempToUnbox();
} else {
tmp = LDefinition::BogusTemp();
tmpToUnbox = LDefinition::BogusTemp();
}
LIsNullOrLikeUndefinedV* lir = new(alloc()) LIsNullOrLikeUndefinedV(useBox(left),
tmp, tmpToUnbox);
define(lir, comp);
return;
}
// Compare booleans.
if (comp->compareType() == MCompare::Compare_Boolean) {
MOZ_ASSERT(left->type() == MIRType::Value);
MOZ_ASSERT(right->type() == MIRType::Boolean);
LCompareB* lir = new(alloc()) LCompareB(useBox(left), useRegisterOrConstant(right));
define(lir, comp);
return;
}
// Compare Int32 or Object pointers.
if (comp->isInt32Comparison() ||
comp->compareType() == MCompare::Compare_UInt32 ||
comp->compareType() == MCompare::Compare_Object)
{
JSOp op = ReorderComparison(comp->jsop(), &left, &right);
LAllocation lhs = useRegister(left);
LAllocation rhs;
if (comp->isInt32Comparison() ||
comp->compareType() == MCompare::Compare_UInt32)
{
rhs = useAnyOrConstant(right);
} else {
rhs = useRegister(right);
}
define(new(alloc()) LCompare(op, lhs, rhs), comp);
return;
}
// Compare Int64.
if (comp->compareType() == MCompare::Compare_Int64 ||
comp->compareType() == MCompare::Compare_UInt64)
{
JSOp op = ReorderComparison(comp->jsop(), &left, &right);
define(new(alloc()) LCompareI64(op, useInt64Register(left), useInt64OrConstant(right)),
comp);
return;
}
// Compare doubles.
if (comp->isDoubleComparison()) {
define(new(alloc()) LCompareD(useRegister(left), useRegister(right)), comp);
return;
}
// Compare float32.
if (comp->isFloat32Comparison()) {
define(new(alloc()) LCompareF(useRegister(left), useRegister(right)), comp);
return;
}
// Compare values.
if (comp->compareType() == MCompare::Compare_Bitwise) {
LCompareBitwise* lir = new(alloc()) LCompareBitwise(useBoxAtStart(left),
useBoxAtStart(right));
define(lir, comp);
return;
}
MOZ_CRASH("Unrecognized compare type.");
}
void
LIRGenerator::lowerBitOp(JSOp op, MInstruction* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
if (lhs->type() == MIRType::Int32) {
MOZ_ASSERT(rhs->type() == MIRType::Int32);
ReorderCommutative(&lhs, &rhs, ins);
lowerForALU(new(alloc()) LBitOpI(op), ins, lhs, rhs);
return;
}
if (lhs->type() == MIRType::Int64) {
MOZ_ASSERT(rhs->type() == MIRType::Int64);
ReorderCommutative(&lhs, &rhs, ins);
lowerForALUInt64(new(alloc()) LBitOpI64(op), ins, lhs, rhs);
return;
}
LBitOpV* lir = new(alloc()) LBitOpV(op, useBoxAtStart(lhs), useBoxAtStart(rhs));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitTypeOf(MTypeOf* ins)
{
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Value);
LTypeOfV* lir = new(alloc()) LTypeOfV(useBox(opd), tempToUnbox());
define(lir, ins);
}
void
LIRGenerator::visitToAsync(MToAsync* ins)
{
LToAsync* lir = new(alloc()) LToAsync(useRegisterAtStart(ins->input()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitToAsyncGen(MToAsyncGen* ins)
{
LToAsyncGen* lir = new(alloc()) LToAsyncGen(useRegisterAtStart(ins->input()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitToAsyncIter(MToAsyncIter* ins)
{
LToAsyncIter* lir = new(alloc()) LToAsyncIter(useRegisterAtStart(ins->input()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitToId(MToId* ins)
{
LToIdV* lir = new(alloc()) LToIdV(useBox(ins->input()), tempDouble());
defineBox(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitBitNot(MBitNot* ins)
{
MDefinition* input = ins->getOperand(0);
if (input->type() == MIRType::Int32) {
lowerForALU(new(alloc()) LBitNotI(), ins, input);
return;
}
LBitNotV* lir = new(alloc()) LBitNotV(useBoxAtStart(input));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
static bool
CanEmitBitAndAtUses(MInstruction* ins)
{
if (!ins->canEmitAtUses())
return false;
if (ins->getOperand(0)->type() != MIRType::Int32 || ins->getOperand(1)->type() != MIRType::Int32)
return false;
MUseIterator iter(ins->usesBegin());
if (iter == ins->usesEnd())
return false;
MNode* node = iter->consumer();
if (!node->isDefinition())
return false;
if (!node->toDefinition()->isTest())
return false;
iter++;
return iter == ins->usesEnd();
}
void
LIRGenerator::visitBitAnd(MBitAnd* ins)
{
// Sniff out if the output of this bitand is used only for a branching.
// If it is, then we will emit an LBitAndAndBranch instruction in place
// of this bitand and any test that uses this bitand. Thus, we can
// ignore this BitAnd.
if (CanEmitBitAndAtUses(ins))
emitAtUses(ins);
else
lowerBitOp(JSOP_BITAND, ins);
}
void
LIRGenerator::visitBitOr(MBitOr* ins)
{
lowerBitOp(JSOP_BITOR, ins);
}
void
LIRGenerator::visitBitXor(MBitXor* ins)
{
lowerBitOp(JSOP_BITXOR, ins);
}
void
LIRGenerator::lowerShiftOp(JSOp op, MShiftInstruction* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
if (lhs->type() == MIRType::Int32) {
MOZ_ASSERT(rhs->type() == MIRType::Int32);
if (ins->type() == MIRType::Double) {
MOZ_ASSERT(op == JSOP_URSH);
lowerUrshD(ins->toUrsh());
return;
}
LShiftI* lir = new(alloc()) LShiftI(op);
if (op == JSOP_URSH) {
if (ins->toUrsh()->fallible())
assignSnapshot(lir, Bailout_OverflowInvalidate);
}
lowerForShift(lir, ins, lhs, rhs);
return;
}
if (lhs->type() == MIRType::Int64) {
MOZ_ASSERT(rhs->type() == MIRType::Int64);
lowerForShiftInt64(new(alloc()) LShiftI64(op), ins, lhs, rhs);
return;
}
MOZ_ASSERT(ins->specialization() == MIRType::None);
if (op == JSOP_URSH) {
// Result is either int32 or double so we have to use BinaryV.
lowerBinaryV(JSOP_URSH, ins);
return;
}
LBitOpV* lir = new(alloc()) LBitOpV(op, useBoxAtStart(lhs), useBoxAtStart(rhs));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitLsh(MLsh* ins)
{
lowerShiftOp(JSOP_LSH, ins);
}
void
LIRGenerator::visitRsh(MRsh* ins)
{
lowerShiftOp(JSOP_RSH, ins);
}
void
LIRGenerator::visitUrsh(MUrsh* ins)
{
lowerShiftOp(JSOP_URSH, ins);
}
void
LIRGenerator::visitSignExtend(MSignExtend* ins)
{
LInstructionHelper<1, 1, 0>* lir;
if (ins->mode() == MSignExtend::Byte)
lir = new(alloc()) LSignExtend(useByteOpRegisterAtStart(ins->input()), ins->mode());
else
lir = new(alloc()) LSignExtend(useRegisterAtStart(ins->input()), ins->mode());
define(lir, ins);
}
void
LIRGenerator::visitRotate(MRotate* ins)
{
MDefinition* input = ins->input();
MDefinition* count = ins->count();
if (ins->type() == MIRType::Int32) {
auto* lir = new(alloc()) LRotate();
lowerForShift(lir, ins, input, count);
} else if (ins->type() == MIRType::Int64) {
auto* lir = new(alloc()) LRotateI64();
lowerForShiftInt64(lir, ins, input, count);
} else {
MOZ_CRASH("unexpected type in visitRotate");
}
}
void
LIRGenerator::visitFloor(MFloor* ins)
{
MIRType type = ins->input()->type();
MOZ_ASSERT(IsFloatingPointType(type));
LInstructionHelper<1, 1, 0>* lir;
if (type == MIRType::Double)
lir = new(alloc()) LFloor(useRegister(ins->input()));
else
lir = new(alloc()) LFloorF(useRegister(ins->input()));
assignSnapshot(lir, Bailout_Round);
define(lir, ins);
}
void
LIRGenerator::visitCeil(MCeil* ins)
{
MIRType type = ins->input()->type();
MOZ_ASSERT(IsFloatingPointType(type));
LInstructionHelper<1, 1, 0>* lir;
if (type == MIRType::Double)
lir = new(alloc()) LCeil(useRegister(ins->input()));
else
lir = new(alloc()) LCeilF(useRegister(ins->input()));
assignSnapshot(lir, Bailout_Round);
define(lir, ins);
}
void
LIRGenerator::visitRound(MRound* ins)
{
MIRType type = ins->input()->type();
MOZ_ASSERT(IsFloatingPointType(type));
LInstructionHelper<1, 1, 1>* lir;
if (type == MIRType::Double)
lir = new (alloc()) LRound(useRegister(ins->input()), tempDouble());
else
lir = new (alloc()) LRoundF(useRegister(ins->input()), tempFloat32());
assignSnapshot(lir, Bailout_Round);
define(lir, ins);
}
void
LIRGenerator::visitMinMax(MMinMax* ins)
{
MDefinition* first = ins->getOperand(0);
MDefinition* second = ins->getOperand(1);
ReorderCommutative(&first, &second, ins);
LMinMaxBase* lir;
switch (ins->specialization()) {
case MIRType::Int32:
lir = new(alloc()) LMinMaxI(useRegisterAtStart(first), useRegisterOrConstant(second));
break;
case MIRType::Float32:
lir = new(alloc()) LMinMaxF(useRegisterAtStart(first), useRegister(second));
break;
case MIRType::Double:
lir = new(alloc()) LMinMaxD(useRegisterAtStart(first), useRegister(second));
break;
default:
MOZ_CRASH();
}
defineReuseInput(lir, ins, 0);
}
void
LIRGenerator::visitAbs(MAbs* ins)
{
MDefinition* num = ins->input();
MOZ_ASSERT(IsNumberType(num->type()));
LInstructionHelper<1, 1, 0>* lir;
switch (num->type()) {
case MIRType::Int32:
lir = new(alloc()) LAbsI(useRegisterAtStart(num));
// needed to handle abs(INT32_MIN)
if (ins->fallible())
assignSnapshot(lir, Bailout_Overflow);
break;
case MIRType::Float32:
lir = new(alloc()) LAbsF(useRegisterAtStart(num));
break;
case MIRType::Double:
lir = new(alloc()) LAbsD(useRegisterAtStart(num));
break;
default:
MOZ_CRASH();
}
defineReuseInput(lir, ins, 0);
}
void
LIRGenerator::visitClz(MClz* ins)
{
MDefinition* num = ins->num();
MOZ_ASSERT(IsIntType(ins->type()));
if (ins->type() == MIRType::Int32) {
LClzI* lir = new(alloc()) LClzI(useRegisterAtStart(num));
define(lir, ins);
return;
}
auto* lir = new(alloc()) LClzI64(useInt64RegisterAtStart(num));
defineInt64(lir, ins);
}
void
LIRGenerator::visitCtz(MCtz* ins)
{
MDefinition* num = ins->num();
MOZ_ASSERT(IsIntType(ins->type()));
if (ins->type() == MIRType::Int32) {
LCtzI* lir = new(alloc()) LCtzI(useRegisterAtStart(num));
define(lir, ins);
return;
}
auto* lir = new(alloc()) LCtzI64(useInt64RegisterAtStart(num));
defineInt64(lir, ins);
}
void
LIRGenerator::visitPopcnt(MPopcnt* ins)
{
MDefinition* num = ins->num();
MOZ_ASSERT(IsIntType(ins->type()));
if (ins->type() == MIRType::Int32) {
LPopcntI* lir = new(alloc()) LPopcntI(useRegisterAtStart(num), temp());
define(lir, ins);
return;
}
auto* lir = new(alloc()) LPopcntI64(useInt64RegisterAtStart(num), temp());
defineInt64(lir, ins);
}
void
LIRGenerator::visitSqrt(MSqrt* ins)
{
MDefinition* num = ins->input();
MOZ_ASSERT(IsFloatingPointType(num->type()));
LInstructionHelper<1, 1, 0>* lir;
if (num->type() == MIRType::Double)
lir = new(alloc()) LSqrtD(useRegisterAtStart(num));
else
lir = new(alloc()) LSqrtF(useRegisterAtStart(num));
define(lir, ins);
}
void
LIRGenerator::visitAtan2(MAtan2* ins)
{
MDefinition* y = ins->y();
MOZ_ASSERT(y->type() == MIRType::Double);
MDefinition* x = ins->x();
MOZ_ASSERT(x->type() == MIRType::Double);
LAtan2D* lir = new(alloc()) LAtan2D(useRegisterAtStart(y), useRegisterAtStart(x),
tempFixed(CallTempReg0));
defineReturn(lir, ins);
}
void
LIRGenerator::visitHypot(MHypot* ins)
{
LHypot* lir = nullptr;
uint32_t length = ins->numOperands();
for (uint32_t i = 0; i < length; ++i)
MOZ_ASSERT(ins->getOperand(i)->type() == MIRType::Double);
switch(length) {
case 2:
lir = new(alloc()) LHypot(useRegisterAtStart(ins->getOperand(0)),
useRegisterAtStart(ins->getOperand(1)),
tempFixed(CallTempReg0));
break;
case 3:
lir = new(alloc()) LHypot(useRegisterAtStart(ins->getOperand(0)),
useRegisterAtStart(ins->getOperand(1)),
useRegisterAtStart(ins->getOperand(2)),
tempFixed(CallTempReg0));
break;
case 4:
lir = new(alloc()) LHypot(useRegisterAtStart(ins->getOperand(0)),
useRegisterAtStart(ins->getOperand(1)),
useRegisterAtStart(ins->getOperand(2)),
useRegisterAtStart(ins->getOperand(3)),
tempFixed(CallTempReg0));
break;
default:
MOZ_CRASH("Unexpected number of arguments to LHypot.");
}
defineReturn(lir, ins);
}
void
LIRGenerator::visitPow(MPow* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Double);
MDefinition* power = ins->power();
MOZ_ASSERT(power->type() == MIRType::Int32 || power->type() == MIRType::Double);
LInstruction* lir;
if (power->type() == MIRType::Int32) {
// Note: useRegisterAtStart here is safe, the temp is a GP register so
// it will never get the same register.
lir = new(alloc()) LPowI(useRegisterAtStart(input), useFixedAtStart(power, CallTempReg1),
tempFixed(CallTempReg0));
} else {
lir = new(alloc()) LPowD(useRegisterAtStart(input), useRegisterAtStart(power),
tempFixed(CallTempReg0));
}
defineReturn(lir, ins);
}
void
LIRGenerator::visitMathFunction(MMathFunction* ins)
{
MOZ_ASSERT(IsFloatingPointType(ins->type()));
MOZ_ASSERT_IF(ins->input()->type() != MIRType::SinCosDouble,
ins->type() == ins->input()->type());
if (ins->input()->type() == MIRType::SinCosDouble) {
MOZ_ASSERT(ins->type() == MIRType::Double);
redefine(ins, ins->input(), ins->function());
return;
}
LInstruction* lir;
if (ins->type() == MIRType::Double) {
// Note: useRegisterAtStart is safe here, the temp is not a FP register.
lir = new(alloc()) LMathFunctionD(useRegisterAtStart(ins->input()),
tempFixed(CallTempReg0));
} else {
lir = new(alloc()) LMathFunctionF(useRegisterAtStart(ins->input()),
tempFixed(CallTempReg0));
}
defineReturn(lir, ins);
}
// Try to mark an add or sub instruction as able to recover its input when
// bailing out.
template <typename S, typename T>
static void
MaybeSetRecoversInput(S* mir, T* lir)
{
MOZ_ASSERT(lir->mirRaw() == mir);
if (!mir->fallible() || !lir->snapshot())
return;
if (lir->output()->policy() != LDefinition::MUST_REUSE_INPUT)
return;
// The original operands to an add or sub can't be recovered if they both
// use the same register.
if (lir->lhs()->isUse() && lir->rhs()->isUse() &&
lir->lhs()->toUse()->virtualRegister() == lir->rhs()->toUse()->virtualRegister())
{
return;
}
// Add instructions that are on two different values can recover
// the input they clobbered via MUST_REUSE_INPUT. Thus, a copy
// of that input does not need to be kept alive in the snapshot
// for the instruction.
lir->setRecoversInput();
const LUse* input = lir->getOperand(lir->output()->getReusedInput())->toUse();
lir->snapshot()->rewriteRecoveredInput(*input);
}
void
LIRGenerator::visitAdd(MAdd* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
MOZ_ASSERT(lhs->type() == rhs->type());
if (ins->specialization() == MIRType::Int32) {
MOZ_ASSERT(lhs->type() == MIRType::Int32);
ReorderCommutative(&lhs, &rhs, ins);
LAddI* lir = new(alloc()) LAddI;
if (ins->fallible())
assignSnapshot(lir, Bailout_OverflowInvalidate);
lowerForALU(lir, ins, lhs, rhs);
MaybeSetRecoversInput(ins, lir);
return;
}
if (ins->specialization() == MIRType::Int64) {
MOZ_ASSERT(lhs->type() == MIRType::Int64);
ReorderCommutative(&lhs, &rhs, ins);
LAddI64* lir = new(alloc()) LAddI64;
lowerForALUInt64(lir, ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Double) {
MOZ_ASSERT(lhs->type() == MIRType::Double);
ReorderCommutative(&lhs, &rhs, ins);
lowerForFPU(new(alloc()) LMathD(JSOP_ADD), ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Float32) {
MOZ_ASSERT(lhs->type() == MIRType::Float32);
ReorderCommutative(&lhs, &rhs, ins);
lowerForFPU(new(alloc()) LMathF(JSOP_ADD), ins, lhs, rhs);
return;
}
lowerBinaryV(JSOP_ADD, ins);
}
void
LIRGenerator::visitSub(MSub* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == rhs->type());
if (ins->specialization() == MIRType::Int32) {
MOZ_ASSERT(lhs->type() == MIRType::Int32);
LSubI* lir = new(alloc()) LSubI;
if (ins->fallible())
assignSnapshot(lir, Bailout_Overflow);
lowerForALU(lir, ins, lhs, rhs);
MaybeSetRecoversInput(ins, lir);
return;
}
if (ins->specialization() == MIRType::Int64) {
MOZ_ASSERT(lhs->type() == MIRType::Int64);
LSubI64* lir = new(alloc()) LSubI64;
lowerForALUInt64(lir, ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Double) {
MOZ_ASSERT(lhs->type() == MIRType::Double);
lowerForFPU(new(alloc()) LMathD(JSOP_SUB), ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Float32) {
MOZ_ASSERT(lhs->type() == MIRType::Float32);
lowerForFPU(new(alloc()) LMathF(JSOP_SUB), ins, lhs, rhs);
return;
}
lowerBinaryV(JSOP_SUB, ins);
}
void
LIRGenerator::visitMul(MMul* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == rhs->type());
if (ins->specialization() == MIRType::Int32) {
MOZ_ASSERT(lhs->type() == MIRType::Int32);
ReorderCommutative(&lhs, &rhs, ins);
// If our RHS is a constant -1 and we don't have to worry about
// overflow, we can optimize to an LNegI.
if (!ins->fallible() && rhs->isConstant() && rhs->toConstant()->toInt32() == -1)
defineReuseInput(new(alloc()) LNegI(useRegisterAtStart(lhs)), ins, 0);
else
lowerMulI(ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Int64) {
MOZ_ASSERT(lhs->type() == MIRType::Int64);
ReorderCommutative(&lhs, &rhs, ins);
LMulI64* lir = new(alloc()) LMulI64;
lowerForMulInt64(lir, ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Double) {
MOZ_ASSERT(lhs->type() == MIRType::Double);
ReorderCommutative(&lhs, &rhs, ins);
// If our RHS is a constant -1.0, we can optimize to an LNegD.
if (!ins->mustPreserveNaN() && rhs->isConstant() && rhs->toConstant()->toDouble() == -1.0)
defineReuseInput(new(alloc()) LNegD(useRegisterAtStart(lhs)), ins, 0);
else
lowerForFPU(new(alloc()) LMathD(JSOP_MUL), ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Float32) {
MOZ_ASSERT(lhs->type() == MIRType::Float32);
ReorderCommutative(&lhs, &rhs, ins);
// We apply the same optimizations as for doubles
if (!ins->mustPreserveNaN() && rhs->isConstant() && rhs->toConstant()->toFloat32() == -1.0f)
defineReuseInput(new(alloc()) LNegF(useRegisterAtStart(lhs)), ins, 0);
else
lowerForFPU(new(alloc()) LMathF(JSOP_MUL), ins, lhs, rhs);
return;
}
lowerBinaryV(JSOP_MUL, ins);
}
void
LIRGenerator::visitDiv(MDiv* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == rhs->type());
if (ins->specialization() == MIRType::Int32) {
MOZ_ASSERT(lhs->type() == MIRType::Int32);
lowerDivI(ins);
return;
}
if (ins->specialization() == MIRType::Int64) {
MOZ_ASSERT(lhs->type() == MIRType::Int64);
lowerDivI64(ins);
return;
}
if (ins->specialization() == MIRType::Double) {
MOZ_ASSERT(lhs->type() == MIRType::Double);
lowerForFPU(new(alloc()) LMathD(JSOP_DIV), ins, lhs, rhs);
return;
}
if (ins->specialization() == MIRType::Float32) {
MOZ_ASSERT(lhs->type() == MIRType::Float32);
lowerForFPU(new(alloc()) LMathF(JSOP_DIV), ins, lhs, rhs);
return;
}
lowerBinaryV(JSOP_DIV, ins);
}
void
LIRGenerator::visitMod(MMod* ins)
{
MOZ_ASSERT(ins->lhs()->type() == ins->rhs()->type());
if (ins->specialization() == MIRType::Int32) {
MOZ_ASSERT(ins->type() == MIRType::Int32);
MOZ_ASSERT(ins->lhs()->type() == MIRType::Int32);
lowerModI(ins);
return;
}
if (ins->specialization() == MIRType::Int64) {
MOZ_ASSERT(ins->type() == MIRType::Int64);
MOZ_ASSERT(ins->lhs()->type() == MIRType::Int64);
lowerModI64(ins);
return;
}
if (ins->specialization() == MIRType::Double) {
MOZ_ASSERT(ins->type() == MIRType::Double);
MOZ_ASSERT(ins->lhs()->type() == MIRType::Double);
MOZ_ASSERT(ins->rhs()->type() == MIRType::Double);
// Note: useRegisterAtStart is safe here, the temp is not a FP register.
LModD* lir = new(alloc()) LModD(useRegisterAtStart(ins->lhs()), useRegisterAtStart(ins->rhs()),
tempFixed(CallTempReg0));
defineReturn(lir, ins);
return;
}
lowerBinaryV(JSOP_MOD, ins);
}
void
LIRGenerator::lowerBinaryV(JSOp op, MBinaryInstruction* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
MOZ_ASSERT(lhs->type() == MIRType::Value);
MOZ_ASSERT(rhs->type() == MIRType::Value);
LBinaryV* lir = new(alloc()) LBinaryV(op, useBoxAtStart(lhs), useBoxAtStart(rhs));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitConcat(MConcat* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
MOZ_ASSERT(lhs->type() == MIRType::String);
MOZ_ASSERT(rhs->type() == MIRType::String);
MOZ_ASSERT(ins->type() == MIRType::String);
LConcat* lir = new(alloc()) LConcat(useFixedAtStart(lhs, CallTempReg0),
useFixedAtStart(rhs, CallTempReg1),
tempFixed(CallTempReg0),
tempFixed(CallTempReg1),
tempFixed(CallTempReg2),
tempFixed(CallTempReg3),
tempFixed(CallTempReg4));
defineFixed(lir, ins, LAllocation(AnyRegister(CallTempReg5)));
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCharCodeAt(MCharCodeAt* ins)
{
MDefinition* str = ins->getOperand(0);
MDefinition* idx = ins->getOperand(1);
MOZ_ASSERT(str->type() == MIRType::String);
MOZ_ASSERT(idx->type() == MIRType::Int32);
LCharCodeAt* lir = new(alloc()) LCharCodeAt(useRegister(str), useRegister(idx));
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitFromCharCode(MFromCharCode* ins)
{
MDefinition* code = ins->getOperand(0);
MOZ_ASSERT(code->type() == MIRType::Int32);
LFromCharCode* lir = new(alloc()) LFromCharCode(useRegister(code));
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitFromCodePoint(MFromCodePoint* ins)
{
MDefinition* codePoint = ins->getOperand(0);
MOZ_ASSERT(codePoint->type() == MIRType::Int32);
LFromCodePoint* lir = new(alloc()) LFromCodePoint(useRegister(codePoint));
assignSnapshot(lir, Bailout_BoundsCheck);
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitStart(MStart* start)
{
LStart* lir = new(alloc()) LStart;
// Create a snapshot that captures the initial state of the function.
assignSnapshot(lir, Bailout_ArgumentCheck);
if (start->block()->graph().entryBlock() == start->block())
lirGraph_.setEntrySnapshot(lir->snapshot());
add(lir);
}
void
LIRGenerator::visitNop(MNop* nop)
{
}
void
LIRGenerator::visitLimitedTruncate(MLimitedTruncate* nop)
{
redefine(nop, nop->input());
}
void
LIRGenerator::visitOsrEntry(MOsrEntry* entry)
{
LOsrEntry* lir = new(alloc()) LOsrEntry(temp());
defineFixed(lir, entry, LAllocation(AnyRegister(OsrFrameReg)));
}
void
LIRGenerator::visitOsrValue(MOsrValue* value)
{
LOsrValue* lir = new(alloc()) LOsrValue(useRegister(value->entry()));
defineBox(lir, value);
}
void
LIRGenerator::visitOsrReturnValue(MOsrReturnValue* value)
{
LOsrReturnValue* lir = new(alloc()) LOsrReturnValue(useRegister(value->entry()));
defineBox(lir, value);
}
void
LIRGenerator::visitOsrEnvironmentChain(MOsrEnvironmentChain* object)
{
LOsrEnvironmentChain* lir = new(alloc()) LOsrEnvironmentChain(useRegister(object->entry()));
define(lir, object);
}
void
LIRGenerator::visitOsrArgumentsObject(MOsrArgumentsObject* object)
{
LOsrArgumentsObject* lir = new(alloc()) LOsrArgumentsObject(useRegister(object->entry()));
define(lir, object);
}
void
LIRGenerator::visitToDouble(MToDouble* convert)
{
MDefinition* opd = convert->input();
mozilla::DebugOnly<MToFPInstruction::ConversionKind> conversion = convert->conversion();
switch (opd->type()) {
case MIRType::Value:
{
LValueToDouble* lir = new(alloc()) LValueToDouble(useBox(opd));
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, convert);
break;
}
case MIRType::Null:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly &&
conversion != MToFPInstruction::NonNullNonStringPrimitives);
lowerConstantDouble(0, convert);
break;
case MIRType::Undefined:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly);
lowerConstantDouble(GenericNaN(), convert);
break;
case MIRType::Boolean:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly);
MOZ_FALLTHROUGH;
case MIRType::Int32:
{
LInt32ToDouble* lir = new(alloc()) LInt32ToDouble(useRegisterAtStart(opd));
define(lir, convert);
break;
}
case MIRType::Float32:
{
LFloat32ToDouble* lir = new (alloc()) LFloat32ToDouble(useRegisterAtStart(opd));
define(lir, convert);
break;
}
case MIRType::Double:
redefine(convert, opd);
break;
default:
// Objects might be effectful. Symbols will throw.
// Strings are complicated - we don't handle them yet.
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitToFloat32(MToFloat32* convert)
{
MDefinition* opd = convert->input();
mozilla::DebugOnly<MToFloat32::ConversionKind> conversion = convert->conversion();
switch (opd->type()) {
case MIRType::Value:
{
LValueToFloat32* lir = new(alloc()) LValueToFloat32(useBox(opd));
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, convert);
break;
}
case MIRType::Null:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly &&
conversion != MToFPInstruction::NonNullNonStringPrimitives);
lowerConstantFloat32(0, convert);
break;
case MIRType::Undefined:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly);
lowerConstantFloat32(GenericNaN(), convert);
break;
case MIRType::Boolean:
MOZ_ASSERT(conversion != MToFPInstruction::NumbersOnly);
MOZ_FALLTHROUGH;
case MIRType::Int32:
{
LInt32ToFloat32* lir = new(alloc()) LInt32ToFloat32(useRegisterAtStart(opd));
define(lir, convert);
break;
}
case MIRType::Double:
{
LDoubleToFloat32* lir = new(alloc()) LDoubleToFloat32(useRegisterAtStart(opd));
define(lir, convert);
break;
}
case MIRType::Float32:
redefine(convert, opd);
break;
default:
// Objects might be effectful. Symbols will throw.
// Strings are complicated - we don't handle them yet.
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitToInt32(MToInt32* convert)
{
MDefinition* opd = convert->input();
switch (opd->type()) {
case MIRType::Value:
{
LValueToInt32* lir =
new(alloc()) LValueToInt32(useBox(opd), tempDouble(), temp(), LValueToInt32::NORMAL);
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, convert);
assignSafepoint(lir, convert);
break;
}
case MIRType::Null:
MOZ_ASSERT(convert->conversion() == MacroAssembler::IntConversion_Any);
define(new(alloc()) LInteger(0), convert);
break;
case MIRType::Boolean:
MOZ_ASSERT(convert->conversion() == MacroAssembler::IntConversion_Any ||
convert->conversion() == MacroAssembler::IntConversion_NumbersOrBoolsOnly);
redefine(convert, opd);
break;
case MIRType::Int32:
redefine(convert, opd);
break;
case MIRType::Float32:
{
LFloat32ToInt32* lir = new(alloc()) LFloat32ToInt32(useRegister(opd));
assignSnapshot(lir, Bailout_PrecisionLoss);
define(lir, convert);
break;
}
case MIRType::Double:
{
LDoubleToInt32* lir = new(alloc()) LDoubleToInt32(useRegister(opd));
assignSnapshot(lir, Bailout_PrecisionLoss);
define(lir, convert);
break;
}
case MIRType::String:
case MIRType::Symbol:
case MIRType::Object:
case MIRType::Undefined:
// Objects might be effectful. Symbols throw. Undefined coerces to NaN, not int32.
MOZ_CRASH("ToInt32 invalid input type");
default:
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitTruncateToInt32(MTruncateToInt32* truncate)
{
MDefinition* opd = truncate->input();
switch (opd->type()) {
case MIRType::Value:
{
LValueToInt32* lir = new(alloc()) LValueToInt32(useBox(opd), tempDouble(), temp(),
LValueToInt32::TRUNCATE);
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, truncate);
assignSafepoint(lir, truncate);
break;
}
case MIRType::Null:
case MIRType::Undefined:
define(new(alloc()) LInteger(0), truncate);
break;
case MIRType::Int32:
case MIRType::Boolean:
redefine(truncate, opd);
break;
case MIRType::Double:
lowerTruncateDToInt32(truncate);
break;
case MIRType::Float32:
lowerTruncateFToInt32(truncate);
break;
default:
// Objects might be effectful. Symbols throw.
// Strings are complicated - we don't handle them yet.
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitWasmTruncateToInt32(MWasmTruncateToInt32* ins)
{
MDefinition* input = ins->input();
switch (input->type()) {
case MIRType::Double:
case MIRType::Float32: {
auto* lir = new(alloc()) LWasmTruncateToInt32(useRegisterAtStart(input));
define(lir, ins);
break;
}
default:
MOZ_CRASH("unexpected type in WasmTruncateToInt32");
}
}
void
LIRGenerator::visitWrapInt64ToInt32(MWrapInt64ToInt32* ins)
{
define(new(alloc()) LWrapInt64ToInt32(useInt64AtStart(ins->input())), ins);
}
void
LIRGenerator::visitToString(MToString* ins)
{
MDefinition* opd = ins->input();
switch (opd->type()) {
case MIRType::Null: {
const JSAtomState& names = GetJitContext()->runtime->names();
LPointer* lir = new(alloc()) LPointer(names.null);
define(lir, ins);
break;
}
case MIRType::Undefined: {
const JSAtomState& names = GetJitContext()->runtime->names();
LPointer* lir = new(alloc()) LPointer(names.undefined);
define(lir, ins);
break;
}
case MIRType::Boolean: {
LBooleanToString* lir = new(alloc()) LBooleanToString(useRegister(opd));
define(lir, ins);
break;
}
case MIRType::Double: {
LDoubleToString* lir = new(alloc()) LDoubleToString(useRegister(opd), temp());
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
case MIRType::Int32: {
LIntToString* lir = new(alloc()) LIntToString(useRegister(opd));
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
case MIRType::String:
redefine(ins, ins->input());
break;
case MIRType::Value: {
LValueToString* lir = new(alloc()) LValueToString(useBox(opd), tempToUnbox());
if (ins->fallible())
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
default:
// Float32, symbols, and objects are not supported.
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitToObjectOrNull(MToObjectOrNull* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType::Value);
LValueToObjectOrNull* lir = new(alloc()) LValueToObjectOrNull(useBox(ins->input()));
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRegExp(MRegExp* ins)
{
LRegExp* lir = new(alloc()) LRegExp();
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRegExpMatcher(MRegExpMatcher* ins)
{
MOZ_ASSERT(ins->regexp()->type() == MIRType::Object);
MOZ_ASSERT(ins->string()->type() == MIRType::String);
MOZ_ASSERT(ins->lastIndex()->type() == MIRType::Int32);
LRegExpMatcher* lir = new(alloc()) LRegExpMatcher(useFixedAtStart(ins->regexp(), RegExpMatcherRegExpReg),
useFixedAtStart(ins->string(), RegExpMatcherStringReg),
useFixedAtStart(ins->lastIndex(), RegExpMatcherLastIndexReg));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRegExpSearcher(MRegExpSearcher* ins)
{
MOZ_ASSERT(ins->regexp()->type() == MIRType::Object);
MOZ_ASSERT(ins->string()->type() == MIRType::String);
MOZ_ASSERT(ins->lastIndex()->type() == MIRType::Int32);
LRegExpSearcher* lir = new(alloc()) LRegExpSearcher(useFixedAtStart(ins->regexp(), RegExpTesterRegExpReg),
useFixedAtStart(ins->string(), RegExpTesterStringReg),
useFixedAtStart(ins->lastIndex(), RegExpTesterLastIndexReg));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRegExpTester(MRegExpTester* ins)
{
MOZ_ASSERT(ins->regexp()->type() == MIRType::Object);
MOZ_ASSERT(ins->string()->type() == MIRType::String);
MOZ_ASSERT(ins->lastIndex()->type() == MIRType::Int32);
LRegExpTester* lir = new(alloc()) LRegExpTester(useFixedAtStart(ins->regexp(), RegExpTesterRegExpReg),
useFixedAtStart(ins->string(), RegExpTesterStringReg),
useFixedAtStart(ins->lastIndex(), RegExpTesterLastIndexReg));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRegExpPrototypeOptimizable(MRegExpPrototypeOptimizable* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
LRegExpPrototypeOptimizable* lir = new(alloc()) LRegExpPrototypeOptimizable(useRegister(ins->object()),
temp());
define(lir, ins);
}
void
LIRGenerator::visitRegExpInstanceOptimizable(MRegExpInstanceOptimizable* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->proto()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
LRegExpInstanceOptimizable* lir = new(alloc()) LRegExpInstanceOptimizable(useRegister(ins->object()),
useRegister(ins->proto()),
temp());
define(lir, ins);
}
void
LIRGenerator::visitGetFirstDollarIndex(MGetFirstDollarIndex* ins)
{
MOZ_ASSERT(ins->str()->type() == MIRType::String);
MOZ_ASSERT(ins->type() == MIRType::Int32);
LGetFirstDollarIndex* lir = new(alloc()) LGetFirstDollarIndex(useRegister(ins->str()),
temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitStringReplace(MStringReplace* ins)
{
MOZ_ASSERT(ins->pattern()->type() == MIRType::String);
MOZ_ASSERT(ins->string()->type() == MIRType::String);
MOZ_ASSERT(ins->replacement()->type() == MIRType::String);
LStringReplace* lir = new(alloc()) LStringReplace(useRegisterOrConstantAtStart(ins->string()),
useRegisterAtStart(ins->pattern()),
useRegisterOrConstantAtStart(ins->replacement()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitBinarySharedStub(MBinarySharedStub* ins)
{
MDefinition* lhs = ins->getOperand(0);
MDefinition* rhs = ins->getOperand(1);
MOZ_ASSERT(ins->type() == MIRType::Value);
MOZ_ASSERT(ins->type() == MIRType::Value);
LBinarySharedStub* lir = new(alloc()) LBinarySharedStub(useBoxFixedAtStart(lhs, R0),
useBoxFixedAtStart(rhs, R1));
defineSharedStubReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitUnarySharedStub(MUnarySharedStub* ins)
{
MDefinition* input = ins->getOperand(0);
MOZ_ASSERT(ins->type() == MIRType::Value);
LUnarySharedStub* lir = new(alloc()) LUnarySharedStub(useBoxFixedAtStart(input, R0));
defineSharedStubReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitNullarySharedStub(MNullarySharedStub* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Value);
LNullarySharedStub* lir = new(alloc()) LNullarySharedStub();
defineSharedStubReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitLambda(MLambda* ins)
{
if (ins->info().singletonType || ins->info().useSingletonForClone) {
// If the function has a singleton type, this instruction will only be
// executed once so we don't bother inlining it.
//
// If UseSingletonForClone is true, we will assign a singleton type to
// the clone and we have to clone the script, we can't do that inline.
LLambdaForSingleton* lir = new(alloc())
LLambdaForSingleton(useRegisterAtStart(ins->environmentChain()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
} else {
LLambda* lir = new(alloc()) LLambda(useRegister(ins->environmentChain()), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
}
void
LIRGenerator::visitLambdaArrow(MLambdaArrow* ins)
{
MOZ_ASSERT(ins->environmentChain()->type() == MIRType::Object);
MOZ_ASSERT(ins->newTargetDef()->type() == MIRType::Value);
LLambdaArrow* lir = new(alloc()) LLambdaArrow(useRegister(ins->environmentChain()),
useBox(ins->newTargetDef()));
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitSetFunName(MSetFunName* ins)
{
MOZ_ASSERT(ins->fun()->type() == MIRType::Object);
MOZ_ASSERT(ins->name()->type() == MIRType::Value);
LSetFunName* lir = new(alloc()) LSetFunName(useRegisterAtStart(ins->fun()),
useBoxAtStart(ins->name()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitKeepAliveObject(MKeepAliveObject* ins)
{
MDefinition* obj = ins->object();
MOZ_ASSERT(obj->type() == MIRType::Object);
add(new(alloc()) LKeepAliveObject(useKeepalive(obj)), ins);
}
void
LIRGenerator::visitSlots(MSlots* ins)
{
define(new(alloc()) LSlots(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitElements(MElements* ins)
{
define(new(alloc()) LElements(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitConstantElements(MConstantElements* ins)
{
define(new(alloc()) LPointer(ins->value().unwrap(/*safe - pointer does not flow back to C++*/),
LPointer::NON_GC_THING),
ins);
}
void
LIRGenerator::visitConvertElementsToDoubles(MConvertElementsToDoubles* ins)
{
LInstruction* check = new(alloc()) LConvertElementsToDoubles(useRegister(ins->elements()));
add(check, ins);
assignSafepoint(check, ins);
}
void
LIRGenerator::visitMaybeToDoubleElement(MMaybeToDoubleElement* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->value()->type() == MIRType::Int32);
LMaybeToDoubleElement* lir = new(alloc()) LMaybeToDoubleElement(useRegisterAtStart(ins->elements()),
useRegisterAtStart(ins->value()),
tempDouble());
defineBox(lir, ins);
}
void
LIRGenerator::visitMaybeCopyElementsForWrite(MMaybeCopyElementsForWrite* ins)
{
LInstruction* check = new(alloc()) LMaybeCopyElementsForWrite(useRegister(ins->object()), temp());
add(check, ins);
assignSafepoint(check, ins);
}
void
LIRGenerator::visitLoadSlot(MLoadSlot* ins)
{
switch (ins->type()) {
case MIRType::Value:
defineBox(new(alloc()) LLoadSlotV(useRegisterAtStart(ins->slots())), ins);
break;
case MIRType::Undefined:
case MIRType::Null:
MOZ_CRASH("typed load must have a payload");
default:
define(new(alloc()) LLoadSlotT(useRegisterForTypedLoad(ins->slots(), ins->type())), ins);
break;
}
}
void
LIRGenerator::visitFunctionEnvironment(MFunctionEnvironment* ins)
{
define(new(alloc()) LFunctionEnvironment(useRegisterAtStart(ins->function())), ins);
}
void
LIRGenerator::visitInterruptCheck(MInterruptCheck* ins)
{
LInstruction* lir = new(alloc()) LInterruptCheck();
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitWasmTrap(MWasmTrap* ins)
{
add(new(alloc()) LWasmTrap, ins);
}
void
LIRGenerator::visitWasmReinterpret(MWasmReinterpret* ins)
{
if (ins->type() == MIRType::Int64)
defineInt64(new(alloc()) LWasmReinterpretToI64(useRegisterAtStart(ins->input())), ins);
else if (ins->input()->type() == MIRType::Int64)
define(new(alloc()) LWasmReinterpretFromI64(useInt64RegisterAtStart(ins->input())), ins);
else
define(new(alloc()) LWasmReinterpret(useRegisterAtStart(ins->input())), ins);
}
void
LIRGenerator::visitStoreSlot(MStoreSlot* ins)
{
LInstruction* lir;
switch (ins->value()->type()) {
case MIRType::Value:
lir = new(alloc()) LStoreSlotV(useRegister(ins->slots()), useBox(ins->value()));
add(lir, ins);
break;
case MIRType::Double:
add(new(alloc()) LStoreSlotT(useRegister(ins->slots()), useRegister(ins->value())), ins);
break;
case MIRType::Float32:
MOZ_CRASH("Float32 shouldn't be stored in a slot.");
default:
add(new(alloc()) LStoreSlotT(useRegister(ins->slots()),
useRegisterOrConstant(ins->value())), ins);
break;
}
}
void
LIRGenerator::visitFilterTypeSet(MFilterTypeSet* ins)
{
redefine(ins, ins->input());
}
void
LIRGenerator::visitTypeBarrier(MTypeBarrier* ins)
{
// Requesting a non-GC pointer is safe here since we never re-enter C++
// from inside a type barrier test.
const TemporaryTypeSet* types = ins->resultTypeSet();
bool needTemp = !types->unknownObject() && types->getObjectCount() > 0;
MIRType inputType = ins->getOperand(0)->type();
MOZ_ASSERT(inputType == ins->type());
// Handle typebarrier that will always bail.
// (Emit LBail for visibility).
if (ins->alwaysBails()) {
LBail* bail = new(alloc()) LBail();
assignSnapshot(bail, Bailout_Inevitable);
add(bail, ins);
redefine(ins, ins->input());
return;
}
// Handle typebarrier with Value as input.
if (inputType == MIRType::Value) {
LDefinition tmp = needTemp ? temp() : tempToUnbox();
LTypeBarrierV* barrier = new(alloc()) LTypeBarrierV(useBox(ins->input()), tmp);
assignSnapshot(barrier, Bailout_TypeBarrierV);
add(barrier, ins);
redefine(ins, ins->input());
return;
}
// The payload needs to be tested if it either might be null or might have
// an object that should be excluded from the barrier.
bool needsObjectBarrier = false;
if (inputType == MIRType::ObjectOrNull)
needsObjectBarrier = true;
if (inputType == MIRType::Object && !types->hasType(TypeSet::AnyObjectType()) &&
ins->barrierKind() != BarrierKind::TypeTagOnly)
{
needsObjectBarrier = true;
}
if (needsObjectBarrier) {
LDefinition tmp = needTemp ? temp() : LDefinition::BogusTemp();
LTypeBarrierO* barrier = new(alloc()) LTypeBarrierO(useRegister(ins->getOperand(0)), tmp);
assignSnapshot(barrier, Bailout_TypeBarrierO);
add(barrier, ins);
redefine(ins, ins->getOperand(0));
return;
}
// Handle remaining cases: No-op, unbox did everything.
redefine(ins, ins->getOperand(0));
}
void
LIRGenerator::visitMonitorTypes(MMonitorTypes* ins)
{
// Requesting a non-GC pointer is safe here since we never re-enter C++
// from inside a type check.
const TemporaryTypeSet* types = ins->typeSet();
bool needTemp = !types->unknownObject() && types->getObjectCount() > 0;
LDefinition tmp = needTemp ? temp() : tempToUnbox();
LMonitorTypes* lir = new(alloc()) LMonitorTypes(useBox(ins->input()), tmp);
assignSnapshot(lir, Bailout_MonitorTypes);
add(lir, ins);
}
// Returns true iff |def| is a constant that's either not a GC thing or is not
// allocated in the nursery.
static bool
IsNonNurseryConstant(MDefinition* def)
{
if (!def->isConstant())
return false;
Value v = def->toConstant()->toJSValue();
return !v.isGCThing() || !IsInsideNursery(v.toGCThing());
}
void
LIRGenerator::visitPostWriteBarrier(MPostWriteBarrier* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
// LPostWriteBarrier assumes that if it has a constant object then that
// object is tenured, and does not need to be tested for being in the
// nursery. Ensure that assumption holds by lowering constant nursery
// objects to a register.
bool useConstantObject = IsNonNurseryConstant(ins->object());
switch (ins->value()->type()) {
case MIRType::Object:
case MIRType::ObjectOrNull: {
LDefinition tmp = needTempForPostBarrier() ? temp() : LDefinition::BogusTemp();
LPostWriteBarrierO* lir =
new(alloc()) LPostWriteBarrierO(useConstantObject
? useOrConstant(ins->object())
: useRegister(ins->object()),
useRegister(ins->value()), tmp);
add(lir, ins);
assignSafepoint(lir, ins);
break;
}
case MIRType::Value: {
LDefinition tmp = needTempForPostBarrier() ? temp() : LDefinition::BogusTemp();
LPostWriteBarrierV* lir =
new(alloc()) LPostWriteBarrierV(useConstantObject
? useOrConstant(ins->object())
: useRegister(ins->object()),
useBox(ins->value()),
tmp);
add(lir, ins);
assignSafepoint(lir, ins);
break;
}
default:
// Currently, only objects can be in the nursery. Other instruction
// types cannot hold nursery pointers.
break;
}
}
void
LIRGenerator::visitPostWriteElementBarrier(MPostWriteElementBarrier* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
// LPostWriteElementBarrier assumes that if it has a constant object then that
// object is tenured, and does not need to be tested for being in the
// nursery. Ensure that assumption holds by lowering constant nursery
// objects to a register.
bool useConstantObject =
ins->object()->isConstant() &&
!IsInsideNursery(&ins->object()->toConstant()->toObject());
switch (ins->value()->type()) {
case MIRType::Object:
case MIRType::ObjectOrNull: {
LDefinition tmp = needTempForPostBarrier() ? temp() : LDefinition::BogusTemp();
LPostWriteElementBarrierO* lir =
new(alloc()) LPostWriteElementBarrierO(useConstantObject
? useOrConstant(ins->object())
: useRegister(ins->object()),
useRegister(ins->value()),
useRegister(ins->index()),
tmp);
add(lir, ins);
assignSafepoint(lir, ins);
break;
}
case MIRType::Value: {
LDefinition tmp = needTempForPostBarrier() ? temp() : LDefinition::BogusTemp();
LPostWriteElementBarrierV* lir =
new(alloc()) LPostWriteElementBarrierV(useConstantObject
? useOrConstant(ins->object())
: useRegister(ins->object()),
useRegister(ins->index()),
useBox(ins->value()),
tmp);
add(lir, ins);
assignSafepoint(lir, ins);
break;
}
default:
// Currently, only objects can be in the nursery. Other instruction
// types cannot hold nursery pointers.
break;
}
}
void
LIRGenerator::visitArrayLength(MArrayLength* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
define(new(alloc()) LArrayLength(useRegisterAtStart(ins->elements())), ins);
}
void
LIRGenerator::visitSetArrayLength(MSetArrayLength* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->index()->isConstant());
add(new(alloc()) LSetArrayLength(useRegister(ins->elements()),
useRegisterOrConstant(ins->index())), ins);
}
void
LIRGenerator::visitGetNextEntryForIterator(MGetNextEntryForIterator* ins)
{
MOZ_ASSERT(ins->iter()->type() == MIRType::Object);
MOZ_ASSERT(ins->result()->type() == MIRType::Object);
auto lir = new(alloc()) LGetNextEntryForIterator(useRegister(ins->iter()),
useRegister(ins->result()),
temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitTypedArrayLength(MTypedArrayLength* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
define(new(alloc()) LTypedArrayLength(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitTypedArrayElements(MTypedArrayElements* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Elements);
define(new(alloc()) LTypedArrayElements(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitSetDisjointTypedElements(MSetDisjointTypedElements* ins)
{
MOZ_ASSERT(ins->type() == MIRType::None);
MDefinition* target = ins->target();
MOZ_ASSERT(target->type() == MIRType::Object);
MDefinition* targetOffset = ins->targetOffset();
MOZ_ASSERT(targetOffset->type() == MIRType::Int32);
MDefinition* source = ins->source();
MOZ_ASSERT(source->type() == MIRType::Object);
auto lir = new(alloc()) LSetDisjointTypedElements(useRegister(target),
useRegister(targetOffset),
useRegister(source),
temp());
add(lir, ins);
}
void
LIRGenerator::visitTypedObjectDescr(MTypedObjectDescr* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Object);
define(new(alloc()) LTypedObjectDescr(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitTypedObjectElements(MTypedObjectElements* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Elements);
define(new(alloc()) LTypedObjectElements(useRegister(ins->object())), ins);
}
void
LIRGenerator::visitSetTypedObjectOffset(MSetTypedObjectOffset* ins)
{
add(new(alloc()) LSetTypedObjectOffset(useRegister(ins->object()),
useRegister(ins->offset()),
temp(), temp()),
ins);
}
void
LIRGenerator::visitInitializedLength(MInitializedLength* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
define(new(alloc()) LInitializedLength(useRegisterAtStart(ins->elements())), ins);
}
void
LIRGenerator::visitSetInitializedLength(MSetInitializedLength* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->index()->isConstant());
add(new(alloc()) LSetInitializedLength(useRegister(ins->elements()),
useRegisterOrConstant(ins->index())), ins);
}
void
LIRGenerator::visitUnboxedArrayLength(MUnboxedArrayLength* ins)
{
define(new(alloc()) LUnboxedArrayLength(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitUnboxedArrayInitializedLength(MUnboxedArrayInitializedLength* ins)
{
define(new(alloc()) LUnboxedArrayInitializedLength(useRegisterAtStart(ins->object())), ins);
}
void
LIRGenerator::visitIncrementUnboxedArrayInitializedLength(MIncrementUnboxedArrayInitializedLength* ins)
{
add(new(alloc()) LIncrementUnboxedArrayInitializedLength(useRegister(ins->object())), ins);
}
void
LIRGenerator::visitSetUnboxedArrayInitializedLength(MSetUnboxedArrayInitializedLength* ins)
{
add(new(alloc()) LSetUnboxedArrayInitializedLength(useRegister(ins->object()),
useRegisterOrConstant(ins->length()),
temp()), ins);
}
void
LIRGenerator::visitNot(MNot* ins)
{
MDefinition* op = ins->input();
// String is converted to length of string in the type analysis phase (see
// TestPolicy).
MOZ_ASSERT(op->type() != MIRType::String);
// - boolean: x xor 1
// - int32: LCompare(x, 0)
// - double: LCompare(x, 0)
// - null or undefined: true
// - object: false if it never emulates undefined, else LNotO(x)
switch (op->type()) {
case MIRType::Boolean: {
MConstant* cons = MConstant::New(alloc(), Int32Value(1));
ins->block()->insertBefore(ins, cons);
lowerForALU(new(alloc()) LBitOpI(JSOP_BITXOR), ins, op, cons);
break;
}
case MIRType::Int32:
define(new(alloc()) LNotI(useRegisterAtStart(op)), ins);
break;
case MIRType::Int64:
define(new(alloc()) LNotI64(useInt64RegisterAtStart(op)), ins);
break;
case MIRType::Double:
define(new(alloc()) LNotD(useRegister(op)), ins);
break;
case MIRType::Float32:
define(new(alloc()) LNotF(useRegister(op)), ins);
break;
case MIRType::Undefined:
case MIRType::Null:
define(new(alloc()) LInteger(1), ins);
break;
case MIRType::Symbol:
define(new(alloc()) LInteger(0), ins);
break;
case MIRType::Object:
if (!ins->operandMightEmulateUndefined()) {
// Objects that don't emulate undefined can be constant-folded.
define(new(alloc()) LInteger(0), ins);
} else {
// All others require further work.
define(new(alloc()) LNotO(useRegister(op)), ins);
}
break;
case MIRType::Value: {
LDefinition temp0, temp1;
if (ins->operandMightEmulateUndefined()) {
temp0 = temp();
temp1 = temp();
} else {
temp0 = LDefinition::BogusTemp();
temp1 = LDefinition::BogusTemp();
}
LNotV* lir = new(alloc()) LNotV(useBox(op), tempDouble(), temp0, temp1);
define(lir, ins);
break;
}
default:
MOZ_CRASH("Unexpected MIRType.");
}
}
void
LIRGenerator::visitBoundsCheck(MBoundsCheck* ins)
{
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->length()->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::Int32);
if (!ins->fallible())
return;
LInstruction* check;
if (ins->minimum() || ins->maximum()) {
check = new(alloc()) LBoundsCheckRange(useRegisterOrConstant(ins->index()),
useAny(ins->length()),
temp());
} else {
check = new(alloc()) LBoundsCheck(useRegisterOrConstant(ins->index()),
useAnyOrConstant(ins->length()));
}
assignSnapshot(check, Bailout_BoundsCheck);
add(check, ins);
}
void
LIRGenerator::visitBoundsCheckLower(MBoundsCheckLower* ins)
{
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
if (!ins->fallible())
return;
LInstruction* check = new(alloc()) LBoundsCheckLower(useRegister(ins->index()));
assignSnapshot(check, Bailout_BoundsCheck);
add(check, ins);
}
void
LIRGenerator::visitInArray(MInArray* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->initLength()->type() == MIRType::Int32);
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
LAllocation object;
if (ins->needsNegativeIntCheck())
object = useRegister(ins->object());
LInArray* lir = new(alloc()) LInArray(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()),
useRegister(ins->initLength()),
object);
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitLoadElement(MLoadElement* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
switch (ins->type()) {
case MIRType::Value:
{
LLoadElementV* lir = new(alloc()) LLoadElementV(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()));
if (ins->fallible())
assignSnapshot(lir, Bailout_Hole);
defineBox(lir, ins);
break;
}
case MIRType::Undefined:
case MIRType::Null:
MOZ_CRASH("typed load must have a payload");
default:
{
LLoadElementT* lir = new(alloc()) LLoadElementT(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()));
if (ins->fallible())
assignSnapshot(lir, Bailout_Hole);
define(lir, ins);
break;
}
}
}
void
LIRGenerator::visitLoadElementHole(MLoadElementHole* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->initLength()->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::Value);
LLoadElementHole* lir = new(alloc()) LLoadElementHole(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()),
useRegister(ins->initLength()));
if (ins->needsNegativeIntCheck())
assignSnapshot(lir, Bailout_NegativeIndex);
defineBox(lir, ins);
}
void
LIRGenerator::visitLoadUnboxedObjectOrNull(MLoadUnboxedObjectOrNull* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
if (ins->type() == MIRType::Object || ins->type() == MIRType::ObjectOrNull) {
LLoadUnboxedPointerT* lir = new(alloc()) LLoadUnboxedPointerT(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()));
if (ins->nullBehavior() == MLoadUnboxedObjectOrNull::BailOnNull)
assignSnapshot(lir, Bailout_TypeBarrierO);
define(lir, ins);
} else {
MOZ_ASSERT(ins->type() == MIRType::Value);
MOZ_ASSERT(ins->nullBehavior() != MLoadUnboxedObjectOrNull::BailOnNull);
LLoadUnboxedPointerV* lir = new(alloc()) LLoadUnboxedPointerV(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()));
defineBox(lir, ins);
}
}
void
LIRGenerator::visitLoadUnboxedString(MLoadUnboxedString* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::String);
LLoadUnboxedPointerT* lir = new(alloc()) LLoadUnboxedPointerT(useRegister(ins->elements()),
useRegisterOrConstant(ins->index()));
define(lir, ins);
}
void
LIRGenerator::visitStoreElement(MStoreElement* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
switch (ins->value()->type()) {
case MIRType::Value:
{
LInstruction* lir = new(alloc()) LStoreElementV(elements, index, useBox(ins->value()));
if (ins->fallible())
assignSnapshot(lir, Bailout_Hole);
add(lir, ins);
break;
}
default:
{
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
LInstruction* lir = new(alloc()) LStoreElementT(elements, index, value);
if (ins->fallible())
assignSnapshot(lir, Bailout_Hole);
add(lir, ins);
break;
}
}
}
void
LIRGenerator::visitStoreElementHole(MStoreElementHole* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse object = useRegister(ins->object());
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// Use a temp register when adding new elements to unboxed arrays.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->unboxedType() != JSVAL_TYPE_MAGIC)
tempDef = temp();
LInstruction* lir;
switch (ins->value()->type()) {
case MIRType::Value:
lir = new(alloc()) LStoreElementHoleV(object, elements, index, useBox(ins->value()),
tempDef);
break;
default:
{
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
lir = new(alloc()) LStoreElementHoleT(object, elements, index, value, tempDef);
break;
}
}
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitFallibleStoreElement(MFallibleStoreElement* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse object = useRegister(ins->object());
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
// Use a temp register when adding new elements to unboxed arrays.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->unboxedType() != JSVAL_TYPE_MAGIC)
tempDef = temp();
LInstruction* lir;
switch (ins->value()->type()) {
case MIRType::Value:
lir = new(alloc()) LFallibleStoreElementV(object, elements, index, useBox(ins->value()),
tempDef);
break;
default:
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
lir = new(alloc()) LFallibleStoreElementT(object, elements, index, value, tempDef);
break;
}
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitStoreUnboxedObjectOrNull(MStoreUnboxedObjectOrNull* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->value()->type() == MIRType::Object ||
ins->value()->type() == MIRType::Null ||
ins->value()->type() == MIRType::ObjectOrNull);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrNonDoubleConstant(ins->index());
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
LInstruction* lir = new(alloc()) LStoreUnboxedPointer(elements, index, value);
add(lir, ins);
}
void
LIRGenerator::visitStoreUnboxedString(MStoreUnboxedString* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->value()->type() == MIRType::String);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
LInstruction* lir = new(alloc()) LStoreUnboxedPointer(elements, index, value);
add(lir, ins);
}
void
LIRGenerator::visitConvertUnboxedObjectToNative(MConvertUnboxedObjectToNative* ins)
{
LInstruction* check = new(alloc()) LConvertUnboxedObjectToNative(useRegister(ins->object()));
add(check, ins);
assignSafepoint(check, ins);
}
void
LIRGenerator::visitEffectiveAddress(MEffectiveAddress* ins)
{
define(new(alloc()) LEffectiveAddress(useRegister(ins->base()), useRegister(ins->index())), ins);
}
void
LIRGenerator::visitArrayPopShift(MArrayPopShift* ins)
{
LUse object = useRegister(ins->object());
switch (ins->type()) {
case MIRType::Value:
{
LArrayPopShiftV* lir = new(alloc()) LArrayPopShiftV(object, temp(), temp());
defineBox(lir, ins);
assignSafepoint(lir, ins);
break;
}
case MIRType::Undefined:
case MIRType::Null:
MOZ_CRASH("typed load must have a payload");
default:
{
LArrayPopShiftT* lir = new(alloc()) LArrayPopShiftT(object, temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
}
}
void
LIRGenerator::visitArrayPush(MArrayPush* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Int32);
LUse object = useRegister(ins->object());
switch (ins->value()->type()) {
case MIRType::Value:
{
LArrayPushV* lir = new(alloc()) LArrayPushV(object, useBox(ins->value()), temp());
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
default:
{
const LAllocation value = useRegisterOrNonDoubleConstant(ins->value());
LArrayPushT* lir = new(alloc()) LArrayPushT(object, value, temp());
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
}
}
void
LIRGenerator::visitArraySlice(MArraySlice* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Object);
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->begin()->type() == MIRType::Int32);
MOZ_ASSERT(ins->end()->type() == MIRType::Int32);
LArraySlice* lir = new(alloc()) LArraySlice(useFixedAtStart(ins->object(), CallTempReg0),
useFixedAtStart(ins->begin(), CallTempReg1),
useFixedAtStart(ins->end(), CallTempReg2),
tempFixed(CallTempReg3),
tempFixed(CallTempReg4));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitArrayJoin(MArrayJoin* ins)
{
MOZ_ASSERT(ins->type() == MIRType::String);
MOZ_ASSERT(ins->array()->type() == MIRType::Object);
MOZ_ASSERT(ins->sep()->type() == MIRType::String);
LArrayJoin* lir = new(alloc()) LArrayJoin(useRegisterAtStart(ins->array()),
useRegisterAtStart(ins->sep()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitSinCos(MSinCos *ins)
{
MOZ_ASSERT(ins->type() == MIRType::SinCosDouble);
MOZ_ASSERT(ins->input()->type() == MIRType::Double ||
ins->input()->type() == MIRType::Float32 ||
ins->input()->type() == MIRType::Int32);
LSinCos *lir = new (alloc()) LSinCos(useRegisterAtStart(ins->input()),
tempFixed(CallTempReg0),
temp());
defineSinCos(lir, ins);
}
void
LIRGenerator::visitStringSplit(MStringSplit* ins)
{
MOZ_ASSERT(ins->type() == MIRType::Object);
MOZ_ASSERT(ins->string()->type() == MIRType::String);
MOZ_ASSERT(ins->separator()->type() == MIRType::String);
LStringSplit* lir = new(alloc()) LStringSplit(useRegisterAtStart(ins->string()),
useRegisterAtStart(ins->separator()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitLoadUnboxedScalar(MLoadUnboxedScalar* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
const LUse elements = useRegister(ins->elements());
const LAllocation index = useRegisterOrConstant(ins->index());
MOZ_ASSERT(IsNumberType(ins->type()) || IsSimdType(ins->type()) ||
ins->type() == MIRType::Boolean);
// We need a temp register for Uint32Array with known double result.
LDefinition tempDef = LDefinition::BogusTemp();
if (ins->readType() == Scalar::Uint32 && IsFloatingPointType(ins->type()))
tempDef = temp();
if (ins->requiresMemoryBarrier()) {
LMemoryBarrier* fence = new(alloc()) LMemoryBarrier(MembarBeforeLoad);
add(fence, ins);
}
LLoadUnboxedScalar* lir = new(alloc()) LLoadUnboxedScalar(elements, index, tempDef);
if (ins->fallible())
assignSnapshot(lir, Bailout_Overflow);
define(lir, ins);
if (ins->requiresMemoryBarrier()) {
LMemoryBarrier* fence = new(alloc()) LMemoryBarrier(MembarAfterLoad);
add(fence, ins);
}
}
void
LIRGenerator::visitClampToUint8(MClampToUint8* ins)
{
MDefinition* in = ins->input();
switch (in->type()) {
case MIRType::Boolean:
redefine(ins, in);
break;
case MIRType::Int32:
defineReuseInput(new(alloc()) LClampIToUint8(useRegisterAtStart(in)), ins, 0);
break;
case MIRType::Double:
// LClampDToUint8 clobbers its input register. Making it available as
// a temp copy describes this behavior to the register allocator.
define(new(alloc()) LClampDToUint8(useRegisterAtStart(in), tempCopy(in, 0)), ins);
break;
case MIRType::Value:
{
LClampVToUint8* lir = new(alloc()) LClampVToUint8(useBox(in), tempDouble());
assignSnapshot(lir, Bailout_NonPrimitiveInput);
define(lir, ins);
assignSafepoint(lir, ins);
break;
}
default:
MOZ_CRASH("unexpected type");
}
}
void
LIRGenerator::visitLoadTypedArrayElementHole(MLoadTypedArrayElementHole* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::Value);
const LUse object = useRegister(ins->object());
const LAllocation index = useRegisterOrConstant(ins->index());
LLoadTypedArrayElementHole* lir = new(alloc()) LLoadTypedArrayElementHole(object, index);
if (ins->fallible())
assignSnapshot(lir, Bailout_Overflow);
defineBox(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitLoadTypedArrayElementStatic(MLoadTypedArrayElementStatic* ins)
{
LLoadTypedArrayElementStatic* lir =
new(alloc()) LLoadTypedArrayElementStatic(useRegisterAtStart(ins->ptr()));
// In case of out of bounds, may bail out, or may jump to ool code.
if (ins->fallible())
assignSnapshot(lir, Bailout_BoundsCheck);
define(lir, ins);
}
void
LIRGenerator::visitStoreUnboxedScalar(MStoreUnboxedScalar* ins)
{
MOZ_ASSERT(IsValidElementsType(ins->elements(), ins->offsetAdjustment()));
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
if (ins->isSimdWrite()) {
MOZ_ASSERT_IF(ins->writeType() == Scalar::Float32x4, ins->value()->type() == MIRType::Float32x4);
MOZ_ASSERT_IF(ins->writeType() == Scalar::Int8x16, ins->value()->type() == MIRType::Int8x16);
MOZ_ASSERT_IF(ins->writeType() == Scalar::Int16x8, ins->value()->type() == MIRType::Int16x8);
MOZ_ASSERT_IF(ins->writeType() == Scalar::Int32x4, ins->value()->type() == MIRType::Int32x4);
} else if (ins->isFloatWrite()) {
MOZ_ASSERT_IF(ins->writeType() == Scalar::Float32, ins->value()->type() == MIRType::Float32);
MOZ_ASSERT_IF(ins->writeType() == Scalar::Float64, ins->value()->type() == MIRType::Double);
} else {
MOZ_ASSERT(ins->value()->type() == MIRType::Int32);
}
LUse elements = useRegister(ins->elements());
LAllocation index = useRegisterOrConstant(ins->index());
LAllocation value;
// For byte arrays, the value has to be in a byte register on x86.
if (ins->isByteWrite())
value = useByteOpRegisterOrNonDoubleConstant(ins->value());
else
value = useRegisterOrNonDoubleConstant(ins->value());
// Optimization opportunity for atomics: on some platforms there
// is a store instruction that incorporates the necessary
// barriers, and we could use that instead of separate barrier and
// store instructions. See bug #1077027.
if (ins->requiresMemoryBarrier()) {
LMemoryBarrier* fence = new(alloc()) LMemoryBarrier(MembarBeforeStore);
add(fence, ins);
}
add(new(alloc()) LStoreUnboxedScalar(elements, index, value), ins);
if (ins->requiresMemoryBarrier()) {
LMemoryBarrier* fence = new(alloc()) LMemoryBarrier(MembarAfterStore);
add(fence, ins);
}
}
void
LIRGenerator::visitStoreTypedArrayElementHole(MStoreTypedArrayElementHole* ins)
{
MOZ_ASSERT(ins->elements()->type() == MIRType::Elements);
MOZ_ASSERT(ins->index()->type() == MIRType::Int32);
MOZ_ASSERT(ins->length()->type() == MIRType::Int32);
if (ins->isFloatWrite()) {
MOZ_ASSERT_IF(ins->arrayType() == Scalar::Float32, ins->value()->type() == MIRType::Float32);
MOZ_ASSERT_IF(ins->arrayType() == Scalar::Float64, ins->value()->type() == MIRType::Double);
} else {
MOZ_ASSERT(ins->value()->type() == MIRType::Int32);
}
LUse elements = useRegister(ins->elements());
LAllocation length = useAnyOrConstant(ins->length());
LAllocation index = useRegisterOrConstant(ins->index());
LAllocation value;
// For byte arrays, the value has to be in a byte register on x86.
if (ins->isByteWrite())
value = useByteOpRegisterOrNonDoubleConstant(ins->value());
else
value = useRegisterOrNonDoubleConstant(ins->value());
add(new(alloc()) LStoreTypedArrayElementHole(elements, length, index, value), ins);
}
void
LIRGenerator::visitLoadFixedSlot(MLoadFixedSlot* ins)
{
MDefinition* obj = ins->object();
MOZ_ASSERT(obj->type() == MIRType::Object);
MIRType type = ins->type();
if (type == MIRType::Value) {
LLoadFixedSlotV* lir = new(alloc()) LLoadFixedSlotV(useRegisterAtStart(obj));
defineBox(lir, ins);
} else {
LLoadFixedSlotT* lir = new(alloc()) LLoadFixedSlotT(useRegisterForTypedLoad(obj, type));
define(lir, ins);
}
}
void
LIRGenerator::visitLoadFixedSlotAndUnbox(MLoadFixedSlotAndUnbox* ins)
{
MDefinition* obj = ins->object();
MOZ_ASSERT(obj->type() == MIRType::Object);
LLoadFixedSlotAndUnbox* lir = new(alloc()) LLoadFixedSlotAndUnbox(useRegisterAtStart(obj));
if (ins->fallible())
assignSnapshot(lir, ins->bailoutKind());
define(lir, ins);
}
void
LIRGenerator::visitStoreFixedSlot(MStoreFixedSlot* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
if (ins->value()->type() == MIRType::Value) {
LStoreFixedSlotV* lir = new(alloc()) LStoreFixedSlotV(useRegister(ins->object()),
useBox(ins->value()));
add(lir, ins);
} else {
LStoreFixedSlotT* lir = new(alloc()) LStoreFixedSlotT(useRegister(ins->object()),
useRegisterOrConstant(ins->value()));
add(lir, ins);
}
}
void
LIRGenerator::visitGetNameCache(MGetNameCache* ins)
{
MOZ_ASSERT(ins->envObj()->type() == MIRType::Object);
// Set the performs-call flag so that we don't omit the overrecursed check.
// This is necessary because the cache can attach a scripted getter stub
// that calls this script recursively.
gen->setPerformsCall();
LGetNameCache* lir = new(alloc()) LGetNameCache(useRegister(ins->envObj()));
defineBox(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallGetIntrinsicValue(MCallGetIntrinsicValue* ins)
{
LCallGetIntrinsicValue* lir = new(alloc()) LCallGetIntrinsicValue();
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitGetPropertyCache(MGetPropertyCache* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MDefinition* id = ins->idval();
MOZ_ASSERT(id->type() == MIRType::String ||
id->type() == MIRType::Symbol ||
id->type() == MIRType::Int32 ||
id->type() == MIRType::Value);
if (ins->monitoredResult()) {
// Set the performs-call flag so that we don't omit the overrecursed
// check. This is necessary because the cache can attach a scripted
// getter stub that calls this script recursively.
gen->setPerformsCall();
}
// If this is a GETPROP, the id is a constant string. Allow passing it as a
// constant to reduce register allocation pressure.
bool useConstId = id->type() == MIRType::String || id->type() == MIRType::Symbol;
if (ins->type() == MIRType::Value) {
LGetPropertyCacheV* lir =
new(alloc()) LGetPropertyCacheV(useRegister(ins->object()),
useBoxOrTypedOrConstant(id, useConstId));
defineBox(lir, ins);
assignSafepoint(lir, ins);
} else {
LGetPropertyCacheT* lir =
new(alloc()) LGetPropertyCacheT(useRegister(ins->object()),
useBoxOrTypedOrConstant(id, useConstId));
define(lir, ins);
assignSafepoint(lir, ins);
}
}
void
LIRGenerator::visitGetPropertyPolymorphic(MGetPropertyPolymorphic* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
if (ins->type() == MIRType::Value) {
LGetPropertyPolymorphicV* lir =
new(alloc()) LGetPropertyPolymorphicV(useRegister(ins->object()));
assignSnapshot(lir, Bailout_ShapeGuard);
defineBox(lir, ins);
} else {
LDefinition maybeTemp = (ins->type() == MIRType::Double) ? temp() : LDefinition::BogusTemp();
LGetPropertyPolymorphicT* lir =
new(alloc()) LGetPropertyPolymorphicT(useRegister(ins->object()), maybeTemp);
assignSnapshot(lir, Bailout_ShapeGuard);
define(lir, ins);
}
}
void
LIRGenerator::visitSetPropertyPolymorphic(MSetPropertyPolymorphic* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
if (ins->value()->type() == MIRType::Value) {
LSetPropertyPolymorphicV* lir =
new(alloc()) LSetPropertyPolymorphicV(useRegister(ins->object()),
useBox(ins->value()),
temp());
assignSnapshot(lir, Bailout_ShapeGuard);
add(lir, ins);
} else {
LAllocation value = useRegisterOrConstant(ins->value());
LSetPropertyPolymorphicT* lir =
new(alloc()) LSetPropertyPolymorphicT(useRegister(ins->object()), value,
ins->value()->type(), temp());
assignSnapshot(lir, Bailout_ShapeGuard);
add(lir, ins);
}
}
void
LIRGenerator::visitBindNameCache(MBindNameCache* ins)
{
MOZ_ASSERT(ins->environmentChain()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Object);
LBindNameCache* lir = new(alloc()) LBindNameCache(useRegister(ins->environmentChain()));
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallBindVar(MCallBindVar* ins)
{
MOZ_ASSERT(ins->environmentChain()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Object);
LCallBindVar* lir = new(alloc()) LCallBindVar(useRegister(ins->environmentChain()));
define(lir, ins);
}
void
LIRGenerator::visitGuardObjectIdentity(MGuardObjectIdentity* ins)
{
LGuardObjectIdentity* guard = new(alloc()) LGuardObjectIdentity(useRegister(ins->object()),
useRegister(ins->expected()));
assignSnapshot(guard, Bailout_ObjectIdentityOrTypeGuard);
add(guard, ins);
redefine(ins, ins->object());
}
void
LIRGenerator::visitGuardClass(MGuardClass* ins)
{
LDefinition t = temp();
LGuardClass* guard = new(alloc()) LGuardClass(useRegister(ins->object()), t);
assignSnapshot(guard, Bailout_ObjectIdentityOrTypeGuard);
add(guard, ins);
}
void
LIRGenerator::visitGuardObject(MGuardObject* ins)
{
// The type policy does all the work, so at this point the input
// is guaranteed to be an object.
MOZ_ASSERT(ins->input()->type() == MIRType::Object);
redefine(ins, ins->input());
}
void
LIRGenerator::visitGuardString(MGuardString* ins)
{
// The type policy does all the work, so at this point the input
// is guaranteed to be a string.
MOZ_ASSERT(ins->input()->type() == MIRType::String);
redefine(ins, ins->input());
}
void
LIRGenerator::visitGuardSharedTypedArray(MGuardSharedTypedArray* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType::Object);
LGuardSharedTypedArray* guard =
new(alloc()) LGuardSharedTypedArray(useRegister(ins->object()), temp());
assignSnapshot(guard, Bailout_NonSharedTypedArrayInput);
add(guard, ins);
}
void
LIRGenerator::visitPolyInlineGuard(MPolyInlineGuard* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType::Object);
redefine(ins, ins->input());
}
void
LIRGenerator::visitGuardReceiverPolymorphic(MGuardReceiverPolymorphic* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Object);
LGuardReceiverPolymorphic* guard =
new(alloc()) LGuardReceiverPolymorphic(useRegister(ins->object()), temp());
assignSnapshot(guard, Bailout_ShapeGuard);
add(guard, ins);
redefine(ins, ins->object());
}
void
LIRGenerator::visitGuardUnboxedExpando(MGuardUnboxedExpando* ins)
{
LGuardUnboxedExpando* guard =
new(alloc()) LGuardUnboxedExpando(useRegister(ins->object()));
assignSnapshot(guard, ins->bailoutKind());
add(guard, ins);
redefine(ins, ins->object());
}
void
LIRGenerator::visitLoadUnboxedExpando(MLoadUnboxedExpando* ins)
{
LLoadUnboxedExpando* lir =
new(alloc()) LLoadUnboxedExpando(useRegisterAtStart(ins->object()));
define(lir, ins);
}
void
LIRGenerator::visitAssertRange(MAssertRange* ins)
{
MDefinition* input = ins->input();
LInstruction* lir = nullptr;
switch (input->type()) {
case MIRType::Boolean:
case MIRType::Int32:
lir = new(alloc()) LAssertRangeI(useRegisterAtStart(input));
break;
case MIRType::Double:
lir = new(alloc()) LAssertRangeD(useRegister(input), tempDouble());
break;
case MIRType::Float32:
lir = new(alloc()) LAssertRangeF(useRegister(input), tempDouble(), tempDouble());
break;
case MIRType::Value:
lir = new(alloc()) LAssertRangeV(useBox(input), tempToUnbox(), tempDouble(), tempDouble());
break;
default:
MOZ_CRASH("Unexpected Range for MIRType");
break;
}
lir->setMir(ins);
add(lir);
}
void
LIRGenerator::visitCallGetProperty(MCallGetProperty* ins)
{
LCallGetProperty* lir = new(alloc()) LCallGetProperty(useBoxAtStart(ins->value()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallGetElement(MCallGetElement* ins)
{
MOZ_ASSERT(ins->lhs()->type() == MIRType::Value);
MOZ_ASSERT(ins->rhs()->type() == MIRType::Value);
LCallGetElement* lir = new(alloc()) LCallGetElement(useBoxAtStart(ins->lhs()),
useBoxAtStart(ins->rhs()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallSetProperty(MCallSetProperty* ins)
{
LInstruction* lir = new(alloc()) LCallSetProperty(useRegisterAtStart(ins->object()),
useBoxAtStart(ins->value()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDeleteProperty(MDeleteProperty* ins)
{
LCallDeleteProperty* lir = new(alloc()) LCallDeleteProperty(useBoxAtStart(ins->value()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDeleteElement(MDeleteElement* ins)
{
LCallDeleteElement* lir = new(alloc()) LCallDeleteElement(useBoxAtStart(ins->value()),
useBoxAtStart(ins->index()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitSetPropertyCache(MSetPropertyCache* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MDefinition* id = ins->idval();
MOZ_ASSERT(id->type() == MIRType::String ||
id->type() == MIRType::Symbol ||
id->type() == MIRType::Int32 ||
id->type() == MIRType::Value);
// If this is a SETPROP, the id is a constant string. Allow passing it as a
// constant to reduce register allocation pressure.
bool useConstId = id->type() == MIRType::String || id->type() == MIRType::Symbol;
bool useConstValue = IsNonNurseryConstant(ins->value());
// Set the performs-call flag so that we don't omit the overrecursed check.
// This is necessary because the cache can attach a scripted setter stub
// that calls this script recursively.
gen->setPerformsCall();
// If the index might be an integer, we need some extra temp registers for
// the dense and typed array element stubs.
LDefinition tempToUnboxIndex = LDefinition::BogusTemp();
LDefinition tempD = LDefinition::BogusTemp();
LDefinition tempF32 = LDefinition::BogusTemp();
if (id->mightBeType(MIRType::Int32)) {
if (id->type() != MIRType::Int32)
tempToUnboxIndex = tempToUnbox();
tempD = tempDouble();
tempF32 = hasUnaliasedDouble() ? tempFloat32() : LDefinition::BogusTemp();
}
LInstruction* lir =
new(alloc()) LSetPropertyCache(useRegister(ins->object()),
useBoxOrTypedOrConstant(id, useConstId),
useBoxOrTypedOrConstant(ins->value(), useConstValue),
temp(),
tempToUnboxIndex, tempD, tempF32);
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallSetElement(MCallSetElement* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->index()->type() == MIRType::Value);
MOZ_ASSERT(ins->value()->type() == MIRType::Value);
LCallSetElement* lir = new(alloc()) LCallSetElement(useRegisterAtStart(ins->object()),
useBoxAtStart(ins->index()),
useBoxAtStart(ins->value()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCallInitElementArray(MCallInitElementArray* ins)
{
LCallInitElementArray* lir = new(alloc()) LCallInitElementArray(useRegisterAtStart(ins->object()),
useBoxAtStart(ins->value()));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitIteratorStart(MIteratorStart* ins)
{
if (ins->object()->type() == MIRType::Value) {
LCallIteratorStartV* lir = new(alloc()) LCallIteratorStartV(useBoxAtStart(ins->object()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
return;
}
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
// Call a stub if this is not a simple for-in loop.
if (ins->flags() != JSITER_ENUMERATE) {
LCallIteratorStartO* lir = new(alloc()) LCallIteratorStartO(useRegisterAtStart(ins->object()));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
} else {
LIteratorStartO* lir = new(alloc()) LIteratorStartO(useRegister(ins->object()), temp(), temp(), temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
}
void
LIRGenerator::visitIteratorMore(MIteratorMore* ins)
{
LIteratorMore* lir = new(alloc()) LIteratorMore(useRegister(ins->iterator()), temp());
defineBox(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitIsNoIter(MIsNoIter* ins)
{
MOZ_ASSERT(ins->hasOneUse());
emitAtUses(ins);
}
void
LIRGenerator::visitIteratorEnd(MIteratorEnd* ins)
{
LIteratorEnd* lir = new(alloc()) LIteratorEnd(useRegister(ins->iterator()), temp(), temp(), temp());
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitStringLength(MStringLength* ins)
{
MOZ_ASSERT(ins->string()->type() == MIRType::String);
define(new(alloc()) LStringLength(useRegisterAtStart(ins->string())), ins);
}
void
LIRGenerator::visitArgumentsLength(MArgumentsLength* ins)
{
define(new(alloc()) LArgumentsLength(), ins);
}
void
LIRGenerator::visitGetFrameArgument(MGetFrameArgument* ins)
{
LGetFrameArgument* lir = new(alloc()) LGetFrameArgument(useRegisterOrConstant(ins->index()));
defineBox(lir, ins);
}
void
LIRGenerator::visitNewTarget(MNewTarget* ins)
{
LNewTarget* lir = new(alloc()) LNewTarget();
defineBox(lir, ins);
}
void
LIRGenerator::visitSetFrameArgument(MSetFrameArgument* ins)
{
MDefinition* input = ins->input();
if (input->type() == MIRType::Value) {
LSetFrameArgumentV* lir = new(alloc()) LSetFrameArgumentV(useBox(input));
add(lir, ins);
} else if (input->type() == MIRType::Undefined || input->type() == MIRType::Null) {
Value val = input->type() == MIRType::Undefined ? UndefinedValue() : NullValue();
LSetFrameArgumentC* lir = new(alloc()) LSetFrameArgumentC(val);
add(lir, ins);
} else {
LSetFrameArgumentT* lir = new(alloc()) LSetFrameArgumentT(useRegister(input));
add(lir, ins);
}
}
void
LIRGenerator::visitRunOncePrologue(MRunOncePrologue* ins)
{
LRunOncePrologue* lir = new(alloc()) LRunOncePrologue;
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitRest(MRest* ins)
{
MOZ_ASSERT(ins->numActuals()->type() == MIRType::Int32);
LRest* lir = new(alloc()) LRest(useFixedAtStart(ins->numActuals(), CallTempReg0),
tempFixed(CallTempReg1),
tempFixed(CallTempReg2),
tempFixed(CallTempReg3));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitThrow(MThrow* ins)
{
MDefinition* value = ins->getOperand(0);
MOZ_ASSERT(value->type() == MIRType::Value);
LThrow* lir = new(alloc()) LThrow(useBoxAtStart(value));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitIn(MIn* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Value);
MOZ_ASSERT(rhs->type() == MIRType::Object);
LIn* lir = new(alloc()) LIn(useBoxAtStart(lhs), useRegisterAtStart(rhs));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitInstanceOf(MInstanceOf* ins)
{
MDefinition* lhs = ins->getOperand(0);
MOZ_ASSERT(lhs->type() == MIRType::Value || lhs->type() == MIRType::Object);
if (lhs->type() == MIRType::Object) {
LInstanceOfO* lir = new(alloc()) LInstanceOfO(useRegister(lhs));
define(lir, ins);
assignSafepoint(lir, ins);
} else {
LInstanceOfV* lir = new(alloc()) LInstanceOfV(useBox(lhs));
define(lir, ins);
assignSafepoint(lir, ins);
}
}
void
LIRGenerator::visitCallInstanceOf(MCallInstanceOf* ins)
{
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
MOZ_ASSERT(lhs->type() == MIRType::Value);
MOZ_ASSERT(rhs->type() == MIRType::Object);
LCallInstanceOf* lir = new(alloc()) LCallInstanceOf(useBoxAtStart(lhs),
useRegisterAtStart(rhs));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitIsCallable(MIsCallable* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
define(new(alloc()) LIsCallable(useRegister(ins->object())), ins);
}
void
LIRGenerator::visitIsConstructor(MIsConstructor* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
define(new(alloc()) LIsConstructor(useRegister(ins->object())), ins);
}
static bool
CanEmitIsObjectAtUses(MInstruction* ins)
{
if (!ins->canEmitAtUses())
return false;
MUseIterator iter(ins->usesBegin());
if (iter == ins->usesEnd())
return false;
MNode* node = iter->consumer();
if (!node->isDefinition())
return false;
if (!node->toDefinition()->isTest())
return false;
iter++;
return iter == ins->usesEnd();
}
void
LIRGenerator::visitIsObject(MIsObject* ins)
{
if (CanEmitIsObjectAtUses(ins)) {
emitAtUses(ins);
return;
}
MDefinition* opd = ins->input();
MOZ_ASSERT(opd->type() == MIRType::Value);
LIsObject* lir = new(alloc()) LIsObject(useBoxAtStart(opd));
define(lir, ins);
}
void
LIRGenerator::visitHasClass(MHasClass* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::Boolean);
define(new(alloc()) LHasClass(useRegister(ins->object())), ins);
}
void
LIRGenerator::visitGuardToClass(MGuardToClass* ins)
{
MOZ_ASSERT(ins->object()->type() == MIRType::Object);
MOZ_ASSERT(ins->type() == MIRType::ObjectOrNull|| ins->type() == MIRType::Object);
LGuardToClass* lir = new(alloc()) LGuardToClass(useRegister(ins->object()), temp());
assignSnapshot(lir, Bailout_TypeBarrierO);
define(lir, ins);
}
void
LIRGenerator::visitWasmAddOffset(MWasmAddOffset* ins)
{
MOZ_ASSERT(ins->base()->type() == MIRType::Int32);
MOZ_ASSERT(ins->type() == MIRType::Int32);
define(new(alloc()) LWasmAddOffset(useRegisterAtStart(ins->base())), ins);
}
void
LIRGenerator::visitWasmBoundsCheck(MWasmBoundsCheck* ins)
{
if (ins->isRedundant()) {
if (MOZ_LIKELY(!JitOptions.wasmAlwaysCheckBounds))
return;
}
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Int32);
auto* lir = new(alloc()) LWasmBoundsCheck(useRegisterAtStart(input));
add(lir, ins);
}
void
LIRGenerator::visitWasmLoadGlobalVar(MWasmLoadGlobalVar* ins)
{
if (ins->type() == MIRType::Int64)
defineInt64(new(alloc()) LWasmLoadGlobalVarI64, ins);
else
define(new(alloc()) LWasmLoadGlobalVar, ins);
}
void
LIRGenerator::visitWasmStoreGlobalVar(MWasmStoreGlobalVar* ins)
{
MDefinition* value = ins->value();
if (value->type() == MIRType::Int64)
add(new(alloc()) LWasmStoreGlobalVarI64(useInt64RegisterAtStart(value)), ins);
else
add(new(alloc()) LWasmStoreGlobalVar(useRegisterAtStart(value)), ins);
}
void
LIRGenerator::visitWasmParameter(MWasmParameter* ins)
{
ABIArg abi = ins->abi();
if (abi.argInRegister()) {
#if defined(JS_NUNBOX32)
if (abi.isGeneralRegPair()) {
defineInt64Fixed(new(alloc()) LWasmParameterI64, ins,
LInt64Allocation(LAllocation(AnyRegister(abi.gpr64().high)),
LAllocation(AnyRegister(abi.gpr64().low))));
return;
}
#endif
defineFixed(new(alloc()) LWasmParameter, ins, LAllocation(abi.reg()));
return;
}
if (ins->type() == MIRType::Int64) {
MOZ_ASSERT(!abi.argInRegister());
defineInt64Fixed(new(alloc()) LWasmParameterI64, ins,
#if defined(JS_NUNBOX32)
LInt64Allocation(LArgument(abi.offsetFromArgBase() + INT64HIGH_OFFSET),
LArgument(abi.offsetFromArgBase() + INT64LOW_OFFSET))
#else
LInt64Allocation(LArgument(abi.offsetFromArgBase()))
#endif
);
} else {
MOZ_ASSERT(IsNumberType(ins->type()) || IsSimdType(ins->type()));
defineFixed(new(alloc()) LWasmParameter, ins, LArgument(abi.offsetFromArgBase()));
}
}
void
LIRGenerator::visitWasmReturn(MWasmReturn* ins)
{
MDefinition* rval = ins->getOperand(0);
if (rval->type() == MIRType::Int64) {
LWasmReturnI64* lir = new(alloc()) LWasmReturnI64(useInt64Fixed(rval, ReturnReg64));
// Preserve the TLS pointer we were passed in `WasmTlsReg`.
MDefinition* tlsPtr = ins->getOperand(1);
lir->setOperand(INT64_PIECES, useFixed(tlsPtr, WasmTlsReg));
add(lir);
return;
}
LWasmReturn* lir = new(alloc()) LWasmReturn;
if (rval->type() == MIRType::Float32)
lir->setOperand(0, useFixed(rval, ReturnFloat32Reg));
else if (rval->type() == MIRType::Double)
lir->setOperand(0, useFixed(rval, ReturnDoubleReg));
else if (IsSimdType(rval->type()))
lir->setOperand(0, useFixed(rval, ReturnSimd128Reg));
else if (rval->type() == MIRType::Int32)
lir->setOperand(0, useFixed(rval, ReturnReg));
else
MOZ_CRASH("Unexpected wasm return type");
// Preserve the TLS pointer we were passed in `WasmTlsReg`.
MDefinition* tlsPtr = ins->getOperand(1);
lir->setOperand(1, useFixed(tlsPtr, WasmTlsReg));
add(lir);
}
void
LIRGenerator::visitWasmReturnVoid(MWasmReturnVoid* ins)
{
auto* lir = new(alloc()) LWasmReturnVoid;
// Preserve the TLS pointer we were passed in `WasmTlsReg`.
MDefinition* tlsPtr = ins->getOperand(0);
lir->setOperand(0, useFixed(tlsPtr, WasmTlsReg));
add(lir);
}
void
LIRGenerator::visitWasmStackArg(MWasmStackArg* ins)
{
if (ins->arg()->type() == MIRType::Int64) {
add(new(alloc()) LWasmStackArgI64(useInt64RegisterOrConstantAtStart(ins->arg())), ins);
} else if (IsFloatingPointType(ins->arg()->type()) || IsSimdType(ins->arg()->type())) {
MOZ_ASSERT(!ins->arg()->isEmittedAtUses());
add(new(alloc()) LWasmStackArg(useRegisterAtStart(ins->arg())), ins);
} else {
add(new(alloc()) LWasmStackArg(useRegisterOrConstantAtStart(ins->arg())), ins);
}
}
void
LIRGenerator::visitWasmCall(MWasmCall* ins)
{
gen->setPerformsCall();
LAllocation* args = gen->allocate<LAllocation>(ins->numOperands());
if (!args) {
gen->abort("Couldn't allocate for MWasmCall");
return;
}
for (unsigned i = 0; i < ins->numArgs(); i++)
args[i] = useFixedAtStart(ins->getOperand(i), ins->registerForArg(i));
if (ins->callee().isTable())
args[ins->numArgs()] = useFixedAtStart(ins->getOperand(ins->numArgs()), WasmTableCallIndexReg);
LInstruction* lir;
if (ins->type() == MIRType::Int64)
lir = new(alloc()) LWasmCallI64(args, ins->numOperands());
else
lir = new(alloc()) LWasmCall(args, ins->numOperands());
if (ins->type() == MIRType::None)
add(lir, ins);
else
defineReturn(lir, ins);
}
void
LIRGenerator::visitSetDOMProperty(MSetDOMProperty* ins)
{
MDefinition* val = ins->value();
Register cxReg, objReg, privReg, valueReg;
GetTempRegForIntArg(0, 0, &cxReg);
GetTempRegForIntArg(1, 0, &objReg);
GetTempRegForIntArg(2, 0, &privReg);
GetTempRegForIntArg(3, 0, &valueReg);
// Keep using GetTempRegForIntArg, since we want to make sure we
// don't clobber registers we're already using.
Register tempReg1, tempReg2;
GetTempRegForIntArg(4, 0, &tempReg1);
mozilla::DebugOnly<bool> ok = GetTempRegForIntArg(5, 0, &tempReg2);
MOZ_ASSERT(ok, "How can we not have six temp registers?");
LSetDOMProperty* lir = new(alloc()) LSetDOMProperty(tempFixed(cxReg),
useFixedAtStart(ins->object(), objReg),
useBoxFixedAtStart(val, tempReg1, tempReg2),
tempFixed(privReg),
tempFixed(valueReg));
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitGetDOMProperty(MGetDOMProperty* ins)
{
Register cxReg, objReg, privReg, valueReg;
GetTempRegForIntArg(0, 0, &cxReg);
GetTempRegForIntArg(1, 0, &objReg);
GetTempRegForIntArg(2, 0, &privReg);
mozilla::DebugOnly<bool> ok = GetTempRegForIntArg(3, 0, &valueReg);
MOZ_ASSERT(ok, "How can we not have four temp registers?");
LGetDOMProperty* lir = new(alloc()) LGetDOMProperty(tempFixed(cxReg),
useFixedAtStart(ins->object(), objReg),
tempFixed(privReg),
tempFixed(valueReg));
defineReturn(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitGetDOMMember(MGetDOMMember* ins)
{
MOZ_ASSERT(ins->isDomMovable(), "Members had better be movable");
// We wish we could assert that ins->domAliasSet() == JSJitInfo::AliasNone,
// but some MGetDOMMembers are for [Pure], not [Constant] properties, whose
// value can in fact change as a result of DOM setters and method calls.
MOZ_ASSERT(ins->domAliasSet() != JSJitInfo::AliasEverything,
"Member gets had better not alias the world");
MDefinition* obj = ins->object();
MOZ_ASSERT(obj->type() == MIRType::Object);
MIRType type = ins->type();
if (type == MIRType::Value) {
LGetDOMMemberV* lir = new(alloc()) LGetDOMMemberV(useRegisterAtStart(obj));
defineBox(lir, ins);
} else {
LGetDOMMemberT* lir = new(alloc()) LGetDOMMemberT(useRegisterForTypedLoad(obj, type));
define(lir, ins);
}
}
void
LIRGenerator::visitRecompileCheck(MRecompileCheck* ins)
{
LRecompileCheck* lir = new(alloc()) LRecompileCheck(temp());
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitSimdBox(MSimdBox* ins)
{
MOZ_ASSERT(IsSimdType(ins->input()->type()));
LUse in = useRegister(ins->input());
LSimdBox* lir = new(alloc()) LSimdBox(in, temp());
define(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitSimdUnbox(MSimdUnbox* ins)
{
MOZ_ASSERT(ins->input()->type() == MIRType::Object);
MOZ_ASSERT(IsSimdType(ins->type()));
LUse in = useRegister(ins->input());
LSimdUnbox* lir = new(alloc()) LSimdUnbox(in, temp());
assignSnapshot(lir, Bailout_UnexpectedSimdInput);
define(lir, ins);
}
void
LIRGenerator::visitSimdConstant(MSimdConstant* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()));
switch (ins->type()) {
case MIRType::Int8x16:
case MIRType::Int16x8:
case MIRType::Int32x4:
case MIRType::Bool8x16:
case MIRType::Bool16x8:
case MIRType::Bool32x4:
define(new(alloc()) LSimd128Int(), ins);
break;
case MIRType::Float32x4:
define(new(alloc()) LSimd128Float(), ins);
break;
default:
MOZ_CRASH("Unknown SIMD kind when generating constant");
}
}
void
LIRGenerator::visitSimdConvert(MSimdConvert* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()));
MDefinition* input = ins->input();
LUse use = useRegister(input);
if (ins->type() == MIRType::Int32x4) {
MOZ_ASSERT(input->type() == MIRType::Float32x4);
switch (ins->signedness()) {
case SimdSign::Signed: {
LFloat32x4ToInt32x4* lir = new(alloc()) LFloat32x4ToInt32x4(use, temp());
if (!gen->compilingWasm())
assignSnapshot(lir, Bailout_BoundsCheck);
define(lir, ins);
break;
}
case SimdSign::Unsigned: {
LFloat32x4ToUint32x4* lir =
new (alloc()) LFloat32x4ToUint32x4(use, temp(), temp(LDefinition::SIMD128INT));
if (!gen->compilingWasm())
assignSnapshot(lir, Bailout_BoundsCheck);
define(lir, ins);
break;
}
default:
MOZ_CRASH("Unexpected SimdConvert sign");
}
} else if (ins->type() == MIRType::Float32x4) {
MOZ_ASSERT(input->type() == MIRType::Int32x4);
MOZ_ASSERT(ins->signedness() == SimdSign::Signed, "Unexpected SimdConvert sign");
define(new(alloc()) LInt32x4ToFloat32x4(use), ins);
} else {
MOZ_CRASH("Unknown SIMD kind when generating constant");
}
}
void
LIRGenerator::visitSimdReinterpretCast(MSimdReinterpretCast* ins)
{
MOZ_ASSERT(IsSimdType(ins->type()) && IsSimdType(ins->input()->type()));
MDefinition* input = ins->input();
LUse use = useRegisterAtStart(input);
// :TODO: (Bug 1132894) We have to allocate a different register as redefine
// and/or defineReuseInput are not yet capable of reusing the same register
// with a different register type.
define(new(alloc()) LSimdReinterpretCast(use), ins);
}
void
LIRGenerator::visitSimdAllTrue(MSimdAllTrue* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(IsBooleanSimdType(input->type()));
LUse use = useRegisterAtStart(input);
define(new(alloc()) LSimdAllTrue(use), ins);
}
void
LIRGenerator::visitSimdAnyTrue(MSimdAnyTrue* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(IsBooleanSimdType(input->type()));
LUse use = useRegisterAtStart(input);
define(new(alloc()) LSimdAnyTrue(use), ins);
}
void
LIRGenerator::visitSimdUnaryArith(MSimdUnaryArith* ins)
{
MOZ_ASSERT(IsSimdType(ins->input()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
// Cannot be at start, as the ouput is used as a temporary to store values.
LUse in = use(ins->input());
switch (ins->type()) {
case MIRType::Int8x16:
case MIRType::Bool8x16:
define(new (alloc()) LSimdUnaryArithIx16(in), ins);
break;
case MIRType::Int16x8:
case MIRType::Bool16x8:
define(new (alloc()) LSimdUnaryArithIx8(in), ins);
break;
case MIRType::Int32x4:
case MIRType::Bool32x4:
define(new (alloc()) LSimdUnaryArithIx4(in), ins);
break;
case MIRType::Float32x4:
define(new (alloc()) LSimdUnaryArithFx4(in), ins);
break;
default:
MOZ_CRASH("Unknown SIMD kind for unary operation");
}
}
void
LIRGenerator::visitSimdBinaryComp(MSimdBinaryComp* ins)
{
MOZ_ASSERT(IsSimdType(ins->lhs()->type()));
MOZ_ASSERT(IsSimdType(ins->rhs()->type()));
MOZ_ASSERT(IsBooleanSimdType(ins->type()));
if (ShouldReorderCommutative(ins->lhs(), ins->rhs(), ins))
ins->reverse();
switch (ins->specialization()) {
case MIRType::Int8x16: {
MOZ_ASSERT(ins->signedness() == SimdSign::Signed);
LSimdBinaryCompIx16* add = new (alloc()) LSimdBinaryCompIx16();
lowerForFPU(add, ins, ins->lhs(), ins->rhs());
return;
}
case MIRType::Int16x8: {
MOZ_ASSERT(ins->signedness() == SimdSign::Signed);
LSimdBinaryCompIx8* add = new (alloc()) LSimdBinaryCompIx8();
lowerForFPU(add, ins, ins->lhs(), ins->rhs());
return;
}
case MIRType::Int32x4: {
MOZ_ASSERT(ins->signedness() == SimdSign::Signed);
LSimdBinaryCompIx4* add = new (alloc()) LSimdBinaryCompIx4();
lowerForCompIx4(add, ins, ins->lhs(), ins->rhs());
return;
}
case MIRType::Float32x4: {
MOZ_ASSERT(ins->signedness() == SimdSign::NotApplicable);
LSimdBinaryCompFx4* add = new (alloc()) LSimdBinaryCompFx4();
lowerForCompFx4(add, ins, ins->lhs(), ins->rhs());
return;
}
default:
MOZ_CRASH("Unknown compare type when comparing values");
}
}
void
LIRGenerator::visitSimdBinaryBitwise(MSimdBinaryBitwise* ins)
{
MOZ_ASSERT(IsSimdType(ins->lhs()->type()));
MOZ_ASSERT(IsSimdType(ins->rhs()->type()));
MOZ_ASSERT(IsSimdType(ins->type()));
MDefinition* lhs = ins->lhs();
MDefinition* rhs = ins->rhs();
ReorderCommutative(&lhs, &rhs, ins);
LSimdBinaryBitwise* lir = new(alloc()) LSimdBinaryBitwise;
lowerForFPU(lir, ins, lhs, rhs);
}
void
LIRGenerator::visitSimdShift(MSimdShift* ins)
{
MOZ_ASSERT(IsIntegerSimdType(ins->type()));
MOZ_ASSERT(ins->lhs()->type() == ins->type());
MOZ_ASSERT(ins->rhs()->type() == MIRType::Int32);
LUse vector = useRegisterAtStart(ins->lhs());
LAllocation value = useRegisterOrConstant(ins->rhs());
// We need a temp register to mask the shift amount, but not if the shift
// amount is a constant.
LDefinition tempReg = value.isConstant() ? LDefinition::BogusTemp() : temp();
LSimdShift* lir = new(alloc()) LSimdShift(vector, value, tempReg);
defineReuseInput(lir, ins, 0);
}
void
LIRGenerator::visitLexicalCheck(MLexicalCheck* ins)
{
MDefinition* input = ins->input();
MOZ_ASSERT(input->type() == MIRType::Value);
LLexicalCheck* lir = new(alloc()) LLexicalCheck(useBox(input));
assignSnapshot(lir, ins->bailoutKind());
add(lir, ins);
redefine(ins, input);
}
void
LIRGenerator::visitThrowRuntimeLexicalError(MThrowRuntimeLexicalError* ins)
{
LThrowRuntimeLexicalError* lir = new(alloc()) LThrowRuntimeLexicalError();
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitGlobalNameConflictsCheck(MGlobalNameConflictsCheck* ins)
{
LGlobalNameConflictsCheck* lir = new(alloc()) LGlobalNameConflictsCheck();
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDebugger(MDebugger* ins)
{
LDebugger* lir = new(alloc()) LDebugger(tempFixed(CallTempReg0), tempFixed(CallTempReg1));
assignSnapshot(lir, Bailout_Debugger);
add(lir, ins);
}
void
LIRGenerator::visitAtomicIsLockFree(MAtomicIsLockFree* ins)
{
define(new(alloc()) LAtomicIsLockFree(useRegister(ins->input())), ins);
}
void
LIRGenerator::visitCheckReturn(MCheckReturn* ins)
{
MDefinition* retVal = ins->returnValue();
MDefinition* thisVal = ins->thisValue();
MOZ_ASSERT(retVal->type() == MIRType::Value);
MOZ_ASSERT(thisVal->type() == MIRType::Value);
LCheckReturn* lir = new(alloc()) LCheckReturn(useBoxAtStart(retVal), useBoxAtStart(thisVal));
assignSnapshot(lir, Bailout_BadDerivedConstructorReturn);
add(lir, ins);
redefine(ins, retVal);
}
void
LIRGenerator::visitCheckIsObj(MCheckIsObj* ins)
{
MDefinition* checkVal = ins->checkValue();
MOZ_ASSERT(checkVal->type() == MIRType::Value);
LCheckIsObj* lir = new(alloc()) LCheckIsObj(useBoxAtStart(checkVal));
redefine(ins, checkVal);
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCheckIsCallable(MCheckIsCallable* ins)
{
MDefinition* checkVal = ins->checkValue();
MOZ_ASSERT(checkVal->type() == MIRType::Value);
LCheckIsCallable* lir = new(alloc()) LCheckIsCallable(useBox(checkVal),
temp());
redefine(ins, checkVal);
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitCheckObjCoercible(MCheckObjCoercible* ins)
{
MDefinition* checkVal = ins->checkValue();
MOZ_ASSERT(checkVal->type() == MIRType::Value);
LCheckObjCoercible* lir = new(alloc()) LCheckObjCoercible(useBoxAtStart(checkVal));
redefine(ins, checkVal);
add(lir, ins);
assignSafepoint(lir, ins);
}
void
LIRGenerator::visitDebugCheckSelfHosted(MDebugCheckSelfHosted* ins)
{
MDefinition* checkVal = ins->checkValue();
MOZ_ASSERT(checkVal->type() == MIRType::Value);
LDebugCheckSelfHosted* lir = new (alloc()) LDebugCheckSelfHosted(useBoxAtStart(checkVal));
redefine(ins, checkVal);
add(lir, ins);
assignSafepoint(lir, ins);
}
static void
SpewResumePoint(MBasicBlock* block, MInstruction* ins, MResumePoint* resumePoint)
{
Fprinter& out = JitSpewPrinter();
out.printf("Current resume point %p details:\n", (void*)resumePoint);
out.printf(" frame count: %u\n", resumePoint->frameCount());
if (ins) {
out.printf(" taken after: ");
ins->printName(out);
} else {
out.printf(" taken at block %d entry", block->id());
}
out.printf("\n");
out.printf(" pc: %p (script: %p, offset: %d)\n",
(void*)resumePoint->pc(),
(void*)resumePoint->block()->info().script(),
int(resumePoint->block()->info().script()->pcToOffset(resumePoint->pc())));
for (size_t i = 0, e = resumePoint->numOperands(); i < e; i++) {
MDefinition* in = resumePoint->getOperand(i);
out.printf(" slot%u: ", (unsigned)i);
in->printName(out);
out.printf("\n");
}
}
bool
LIRGenerator::visitInstruction(MInstruction* ins)
{
if (ins->isRecoveredOnBailout()) {
MOZ_ASSERT(!JitOptions.disableRecoverIns);
return true;
}
if (!gen->ensureBallast())
return false;
ins->accept(this);
if (ins->possiblyCalls())
gen->setPerformsCall();
if (ins->resumePoint())
updateResumeState(ins);
#ifdef DEBUG
ins->setInWorklistUnchecked();
#endif
// If no safepoint was created, there's no need for an OSI point.
if (LOsiPoint* osiPoint = popOsiPoint())
add(osiPoint);
return !gen->errored();
}
void
LIRGenerator::definePhis()
{
size_t lirIndex = 0;
MBasicBlock* block = current->mir();
for (MPhiIterator phi(block->phisBegin()); phi != block->phisEnd(); phi++) {
if (phi->type() == MIRType::Value) {
defineUntypedPhi(*phi, lirIndex);
lirIndex += BOX_PIECES;
} else if (phi->type() == MIRType::Int64) {
defineInt64Phi(*phi, lirIndex);
lirIndex += INT64_PIECES;
} else {
defineTypedPhi(*phi, lirIndex);
lirIndex += 1;
}
}
}
void
LIRGenerator::updateResumeState(MInstruction* ins)
{
lastResumePoint_ = ins->resumePoint();
if (JitSpewEnabled(JitSpew_IonSnapshots) && lastResumePoint_)
SpewResumePoint(nullptr, ins, lastResumePoint_);
}
void
LIRGenerator::updateResumeState(MBasicBlock* block)
{
// As Value Numbering phase can remove edges from the entry basic block to a
// code paths reachable from the OSR entry point, we have to add fixup
// blocks to keep the dominator tree organized the same way. These fixup
// blocks are flaged as unreachable, and should only exist iff the graph has
// an OSR block.
//
// Note: RangeAnalysis can flag blocks as unreachable, but they are only
// removed iff GVN (including UCE) is enabled.
MOZ_ASSERT_IF(!mir()->compilingWasm() && !block->unreachable(), block->entryResumePoint());
MOZ_ASSERT_IF(block->unreachable(), block->graph().osrBlock() ||
!mir()->optimizationInfo().gvnEnabled());
lastResumePoint_ = block->entryResumePoint();
if (JitSpewEnabled(JitSpew_IonSnapshots) && lastResumePoint_)
SpewResumePoint(block, nullptr, lastResumePoint_);
}
bool
LIRGenerator::visitBlock(MBasicBlock* block)
{
current = block->lir();
updateResumeState(block);
definePhis();
// See fixup blocks added by Value Numbering, to keep the dominator relation
// modified by the presence of the OSR block.
MOZ_ASSERT_IF(block->unreachable(), *block->begin() == block->lastIns() ||
!mir()->optimizationInfo().gvnEnabled());
MOZ_ASSERT_IF(block->unreachable(), block->graph().osrBlock() ||
!mir()->optimizationInfo().gvnEnabled());
for (MInstructionIterator iter = block->begin(); *iter != block->lastIns(); iter++) {
if (!visitInstruction(*iter))
return false;
}
if (block->successorWithPhis()) {
// If we have a successor with phis, lower the phi input now that we
// are approaching the join point.
MBasicBlock* successor = block->successorWithPhis();
uint32_t position = block->positionInPhiSuccessor();
size_t lirIndex = 0;
for (MPhiIterator phi(successor->phisBegin()); phi != successor->phisEnd(); phi++) {
if (!gen->ensureBallast())
return false;
MDefinition* opd = phi->getOperand(position);
ensureDefined(opd);
MOZ_ASSERT(opd->type() == phi->type());
if (phi->type() == MIRType::Value) {
lowerUntypedPhiInput(*phi, position, successor->lir(), lirIndex);
lirIndex += BOX_PIECES;
} else if (phi->type() == MIRType::Int64) {
lowerInt64PhiInput(*phi, position, successor->lir(), lirIndex);
lirIndex += INT64_PIECES;
} else {
lowerTypedPhiInput(*phi, position, successor->lir(), lirIndex);
lirIndex += 1;
}
}
}
// Now emit the last instruction, which is some form of branch.
if (!visitInstruction(block->lastIns()))
return false;
return true;
}
void
LIRGenerator::visitNaNToZero(MNaNToZero *ins)
{
MDefinition* input = ins->input();
if (ins->operandIsNeverNaN() && ins->operandIsNeverNegativeZero()) {
redefine(ins, input);
return;
}
LNaNToZero* lir = new(alloc()) LNaNToZero(useRegisterAtStart(input), tempDouble());
defineReuseInput(lir, ins, 0);
}
bool
LIRGenerator::generate()
{
// Create all blocks and prep all phis beforehand.
for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) {
if (gen->shouldCancel("Lowering (preparation loop)"))
return false;
if (!lirGraph_.initBlock(*block))
return false;
}
for (ReversePostorderIterator block(graph.rpoBegin()); block != graph.rpoEnd(); block++) {
if (gen->shouldCancel("Lowering (main loop)"))
return false;
if (!visitBlock(*block))
return false;
}
lirGraph_.setArgumentSlotCount(maxargslots_);
return true;
}
void
LIRGenerator::visitPhi(MPhi* phi)
{
// Phi nodes are not lowered because they are only meaningful for the register allocator.
MOZ_CRASH("Unexpected Phi node during Lowering.");
}
void
LIRGenerator::visitBeta(MBeta* beta)
{
// Beta nodes are supposed to be removed before because they are
// only used to carry the range information for Range analysis
MOZ_CRASH("Unexpected Beta node during Lowering.");
}
void
LIRGenerator::visitObjectState(MObjectState* objState)
{
// ObjectState nodes are always recovered on bailouts
MOZ_CRASH("Unexpected ObjectState node during Lowering.");
}
void
LIRGenerator::visitArrayState(MArrayState* objState)
{
// ArrayState nodes are always recovered on bailouts
MOZ_CRASH("Unexpected ArrayState node during Lowering.");
}
void
LIRGenerator::visitUnknownValue(MUnknownValue* ins)
{
MOZ_CRASH("Can not lower unknown value.");
}