Mypal/js/src/wasm/AsmJS.cpp

8923 lines
282 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
*
* Copyright 2014 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wasm/AsmJS.h"
#include "mozilla/Attributes.h"
#include "mozilla/Compression.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Maybe.h"
#include "jsmath.h"
#include "jsprf.h"
#include "jsstr.h"
#include "jsutil.h"
#include "jswrapper.h"
#include "builtin/SIMD.h"
#include "frontend/Parser.h"
#include "gc/Policy.h"
#include "js/MemoryMetrics.h"
#include "vm/StringBuffer.h"
#include "vm/Time.h"
#include "vm/TypedArrayObject.h"
#include "wasm/WasmBinaryFormat.h"
#include "wasm/WasmGenerator.h"
#include "wasm/WasmInstance.h"
#include "wasm/WasmJS.h"
#include "wasm/WasmSerialize.h"
#include "jsobjinlines.h"
#include "frontend/ParseNode-inl.h"
#include "vm/ArrayBufferObject-inl.h"
using namespace js;
using namespace js::frontend;
using namespace js::jit;
using namespace js::wasm;
using mozilla::CeilingLog2;
using mozilla::Compression::LZ4;
using mozilla::HashGeneric;
using mozilla::IsNaN;
using mozilla::IsNegativeZero;
using mozilla::IsPowerOfTwo;
using mozilla::Maybe;
using mozilla::Move;
using mozilla::PodCopy;
using mozilla::PodEqual;
using mozilla::PodZero;
using mozilla::PositiveInfinity;
using JS::AsmJSOption;
using JS::GenericNaN;
/*****************************************************************************/
// The asm.js valid heap lengths are precisely the WASM valid heap lengths for ARM
// greater or equal to MinHeapLength
static const size_t MinHeapLength = PageSize;
static uint32_t
RoundUpToNextValidAsmJSHeapLength(uint32_t length)
{
if (length <= MinHeapLength)
return MinHeapLength;
return wasm::RoundUpToNextValidARMImmediate(length);
}
/*****************************************************************************/
// asm.js module object
// The asm.js spec recognizes this set of builtin Math functions.
enum AsmJSMathBuiltinFunction
{
AsmJSMathBuiltin_sin, AsmJSMathBuiltin_cos, AsmJSMathBuiltin_tan,
AsmJSMathBuiltin_asin, AsmJSMathBuiltin_acos, AsmJSMathBuiltin_atan,
AsmJSMathBuiltin_ceil, AsmJSMathBuiltin_floor, AsmJSMathBuiltin_exp,
AsmJSMathBuiltin_log, AsmJSMathBuiltin_pow, AsmJSMathBuiltin_sqrt,
AsmJSMathBuiltin_abs, AsmJSMathBuiltin_atan2, AsmJSMathBuiltin_imul,
AsmJSMathBuiltin_fround, AsmJSMathBuiltin_min, AsmJSMathBuiltin_max,
AsmJSMathBuiltin_clz32
};
// The asm.js spec will recognize this set of builtin Atomics functions.
enum AsmJSAtomicsBuiltinFunction
{
AsmJSAtomicsBuiltin_compareExchange,
AsmJSAtomicsBuiltin_exchange,
AsmJSAtomicsBuiltin_load,
AsmJSAtomicsBuiltin_store,
AsmJSAtomicsBuiltin_add,
AsmJSAtomicsBuiltin_sub,
AsmJSAtomicsBuiltin_and,
AsmJSAtomicsBuiltin_or,
AsmJSAtomicsBuiltin_xor,
AsmJSAtomicsBuiltin_isLockFree
};
// An AsmJSGlobal represents a JS global variable in the asm.js module function.
class AsmJSGlobal
{
public:
enum Which { Variable, FFI, ArrayView, ArrayViewCtor, MathBuiltinFunction,
AtomicsBuiltinFunction, Constant, SimdCtor, SimdOp };
enum VarInitKind { InitConstant, InitImport };
enum ConstantKind { GlobalConstant, MathConstant };
private:
struct CacheablePod {
Which which_;
union V {
struct {
VarInitKind initKind_;
union U {
ValType importType_;
Val val_;
U() {}
} u;
} var;
uint32_t ffiIndex_;
Scalar::Type viewType_;
AsmJSMathBuiltinFunction mathBuiltinFunc_;
AsmJSAtomicsBuiltinFunction atomicsBuiltinFunc_;
SimdType simdCtorType_;
struct {
SimdType type_;
SimdOperation which_;
} simdOp;
struct {
ConstantKind kind_;
double value_;
} constant;
V() {}
} u;
} pod;
CacheableChars field_;
friend class ModuleValidator;
public:
AsmJSGlobal() = default;
AsmJSGlobal(Which which, UniqueChars field) {
mozilla::PodZero(&pod); // zero padding for Valgrind
pod.which_ = which;
field_ = Move(field);
}
const char* field() const {
return field_.get();
}
Which which() const {
return pod.which_;
}
VarInitKind varInitKind() const {
MOZ_ASSERT(pod.which_ == Variable);
return pod.u.var.initKind_;
}
Val varInitVal() const {
MOZ_ASSERT(pod.which_ == Variable);
MOZ_ASSERT(pod.u.var.initKind_ == InitConstant);
return pod.u.var.u.val_;
}
ValType varInitImportType() const {
MOZ_ASSERT(pod.which_ == Variable);
MOZ_ASSERT(pod.u.var.initKind_ == InitImport);
return pod.u.var.u.importType_;
}
uint32_t ffiIndex() const {
MOZ_ASSERT(pod.which_ == FFI);
return pod.u.ffiIndex_;
}
// When a view is created from an imported constructor:
// var I32 = stdlib.Int32Array;
// var i32 = new I32(buffer);
// the second import has nothing to validate and thus has a null field.
Scalar::Type viewType() const {
MOZ_ASSERT(pod.which_ == ArrayView || pod.which_ == ArrayViewCtor);
return pod.u.viewType_;
}
AsmJSMathBuiltinFunction mathBuiltinFunction() const {
MOZ_ASSERT(pod.which_ == MathBuiltinFunction);
return pod.u.mathBuiltinFunc_;
}
AsmJSAtomicsBuiltinFunction atomicsBuiltinFunction() const {
MOZ_ASSERT(pod.which_ == AtomicsBuiltinFunction);
return pod.u.atomicsBuiltinFunc_;
}
SimdType simdCtorType() const {
MOZ_ASSERT(pod.which_ == SimdCtor);
return pod.u.simdCtorType_;
}
SimdOperation simdOperation() const {
MOZ_ASSERT(pod.which_ == SimdOp);
return pod.u.simdOp.which_;
}
SimdType simdOperationType() const {
MOZ_ASSERT(pod.which_ == SimdOp);
return pod.u.simdOp.type_;
}
ConstantKind constantKind() const {
MOZ_ASSERT(pod.which_ == Constant);
return pod.u.constant.kind_;
}
double constantValue() const {
MOZ_ASSERT(pod.which_ == Constant);
return pod.u.constant.value_;
}
WASM_DECLARE_SERIALIZABLE(AsmJSGlobal);
};
typedef Vector<AsmJSGlobal, 0, SystemAllocPolicy> AsmJSGlobalVector;
// An AsmJSImport is slightly different than an asm.js FFI function: a single
// asm.js FFI function can be called with many different signatures. When
// compiled to wasm, each unique FFI function paired with signature generates a
// wasm import.
class AsmJSImport
{
uint32_t ffiIndex_;
public:
AsmJSImport() = default;
explicit AsmJSImport(uint32_t ffiIndex) : ffiIndex_(ffiIndex) {}
uint32_t ffiIndex() const { return ffiIndex_; }
};
typedef Vector<AsmJSImport, 0, SystemAllocPolicy> AsmJSImportVector;
// An AsmJSExport logically extends Export with the extra information needed for
// an asm.js exported function, viz., the offsets in module's source chars in
// case the function is toString()ed.
class AsmJSExport
{
uint32_t funcIndex_ = 0;
// All fields are treated as cacheable POD:
uint32_t startOffsetInModule_ = 0; // Store module-start-relative offsets
uint32_t endOffsetInModule_ = 0; // so preserved by serialization.
public:
AsmJSExport() = default;
AsmJSExport(uint32_t funcIndex, uint32_t startOffsetInModule, uint32_t endOffsetInModule)
: funcIndex_(funcIndex),
startOffsetInModule_(startOffsetInModule),
endOffsetInModule_(endOffsetInModule)
{}
uint32_t funcIndex() const {
return funcIndex_;
}
uint32_t startOffsetInModule() const {
return startOffsetInModule_;
}
uint32_t endOffsetInModule() const {
return endOffsetInModule_;
}
};
typedef Vector<AsmJSExport, 0, SystemAllocPolicy> AsmJSExportVector;
enum class CacheResult
{
Hit,
Miss
};
// Holds the immutable guts of an AsmJSModule.
//
// AsmJSMetadata is built incrementally by ModuleValidator and then shared
// immutably between AsmJSModules.
struct AsmJSMetadataCacheablePod
{
uint32_t numFFIs = 0;
uint32_t srcLength = 0;
uint32_t srcLengthWithRightBrace = 0;
bool usesSimd = false;
AsmJSMetadataCacheablePod() = default;
};
struct js::AsmJSMetadata : Metadata, AsmJSMetadataCacheablePod
{
AsmJSGlobalVector asmJSGlobals;
AsmJSImportVector asmJSImports;
AsmJSExportVector asmJSExports;
CacheableCharsVector asmJSFuncNames;
CacheableChars globalArgumentName;
CacheableChars importArgumentName;
CacheableChars bufferArgumentName;
CacheResult cacheResult;
// These values are not serialized since they are relative to the
// containing script which can be different between serialization and
// deserialization contexts. Thus, they must be set explicitly using the
// ambient Parser/ScriptSource after deserialization.
//
// srcStart refers to the offset in the ScriptSource to the beginning of
// the asm.js module function. If the function has been created with the
// Function constructor, this will be the first character in the function
// source. Otherwise, it will be the opening parenthesis of the arguments
// list.
uint32_t preludeStart;
uint32_t srcStart;
uint32_t srcBodyStart;
bool strict;
ScriptSourceHolder scriptSource;
uint32_t srcEndBeforeCurly() const {
return srcStart + srcLength;
}
uint32_t srcEndAfterCurly() const {
return srcStart + srcLengthWithRightBrace;
}
AsmJSMetadata()
: Metadata(ModuleKind::AsmJS),
cacheResult(CacheResult::Miss),
srcStart(0),
srcBodyStart(0),
strict(false)
{}
~AsmJSMetadata() override {}
const AsmJSExport& lookupAsmJSExport(uint32_t funcIndex) const {
// The AsmJSExportVector isn't stored in sorted order so do a linear
// search. This is for the super-cold and already-expensive toString()
// path and the number of exports is generally small.
for (const AsmJSExport& exp : asmJSExports) {
if (exp.funcIndex() == funcIndex)
return exp;
}
MOZ_CRASH("missing asm.js func export");
}
bool mutedErrors() const override {
return scriptSource.get()->mutedErrors();
}
const char16_t* displayURL() const override {
return scriptSource.get()->hasDisplayURL() ? scriptSource.get()->displayURL() : nullptr;
}
ScriptSource* maybeScriptSource() const override {
return scriptSource.get();
}
bool getFuncName(JSContext* cx, const Bytes*, uint32_t funcIndex,
TwoByteName* name) const override
{
// asm.js doesn't allow exporting imports or putting imports in tables
MOZ_ASSERT(funcIndex >= AsmJSFirstDefFuncIndex);
const char* p = asmJSFuncNames[funcIndex - AsmJSFirstDefFuncIndex].get();
UTF8Chars utf8(p, strlen(p));
size_t twoByteLength;
UniqueTwoByteChars chars(JS::UTF8CharsToNewTwoByteCharsZ(cx, utf8, &twoByteLength).get());
if (!chars)
return false;
if (!name->growByUninitialized(twoByteLength))
return false;
PodCopy(name->begin(), chars.get(), twoByteLength);
return true;
}
AsmJSMetadataCacheablePod& pod() { return *this; }
const AsmJSMetadataCacheablePod& pod() const { return *this; }
WASM_DECLARE_SERIALIZABLE_OVERRIDE(AsmJSMetadata)
};
typedef RefPtr<AsmJSMetadata> MutableAsmJSMetadata;
/*****************************************************************************/
// ParseNode utilities
static inline ParseNode*
NextNode(ParseNode* pn)
{
return pn->pn_next;
}
static inline ParseNode*
UnaryKid(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_UNARY));
return pn->pn_kid;
}
static inline ParseNode*
BinaryRight(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_BINARY));
return pn->pn_right;
}
static inline ParseNode*
BinaryLeft(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_BINARY));
return pn->pn_left;
}
static inline ParseNode*
ReturnExpr(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_RETURN));
return UnaryKid(pn);
}
static inline ParseNode*
TernaryKid1(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_TERNARY));
return pn->pn_kid1;
}
static inline ParseNode*
TernaryKid2(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_TERNARY));
return pn->pn_kid2;
}
static inline ParseNode*
TernaryKid3(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_TERNARY));
return pn->pn_kid3;
}
static inline ParseNode*
ListHead(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_LIST));
return pn->pn_head;
}
static inline unsigned
ListLength(ParseNode* pn)
{
MOZ_ASSERT(pn->isArity(PN_LIST));
return pn->pn_count;
}
static inline ParseNode*
CallCallee(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_CALL));
return ListHead(pn);
}
static inline unsigned
CallArgListLength(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_CALL));
MOZ_ASSERT(ListLength(pn) >= 1);
return ListLength(pn) - 1;
}
static inline ParseNode*
CallArgList(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_CALL));
return NextNode(ListHead(pn));
}
static inline ParseNode*
VarListHead(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_VAR) || pn->isKind(PNK_CONST));
return ListHead(pn);
}
static inline bool
IsDefaultCase(ParseNode* pn)
{
return pn->as<CaseClause>().isDefault();
}
static inline ParseNode*
CaseExpr(ParseNode* pn)
{
return pn->as<CaseClause>().caseExpression();
}
static inline ParseNode*
CaseBody(ParseNode* pn)
{
return pn->as<CaseClause>().statementList();
}
static inline ParseNode*
BinaryOpLeft(ParseNode* pn)
{
MOZ_ASSERT(pn->isBinaryOperation());
MOZ_ASSERT(pn->isArity(PN_LIST));
MOZ_ASSERT(pn->pn_count == 2);
return ListHead(pn);
}
static inline ParseNode*
BinaryOpRight(ParseNode* pn)
{
MOZ_ASSERT(pn->isBinaryOperation());
MOZ_ASSERT(pn->isArity(PN_LIST));
MOZ_ASSERT(pn->pn_count == 2);
return NextNode(ListHead(pn));
}
static inline ParseNode*
BitwiseLeft(ParseNode* pn)
{
return BinaryOpLeft(pn);
}
static inline ParseNode*
BitwiseRight(ParseNode* pn)
{
return BinaryOpRight(pn);
}
static inline ParseNode*
MultiplyLeft(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_STAR));
return BinaryOpLeft(pn);
}
static inline ParseNode*
MultiplyRight(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_STAR));
return BinaryOpRight(pn);
}
static inline ParseNode*
AddSubLeft(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_ADD) || pn->isKind(PNK_SUB));
return BinaryOpLeft(pn);
}
static inline ParseNode*
AddSubRight(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_ADD) || pn->isKind(PNK_SUB));
return BinaryOpRight(pn);
}
static inline ParseNode*
DivOrModLeft(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_DIV) || pn->isKind(PNK_MOD));
return BinaryOpLeft(pn);
}
static inline ParseNode*
DivOrModRight(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_DIV) || pn->isKind(PNK_MOD));
return BinaryOpRight(pn);
}
static inline ParseNode*
ComparisonLeft(ParseNode* pn)
{
return BinaryOpLeft(pn);
}
static inline ParseNode*
ComparisonRight(ParseNode* pn)
{
return BinaryOpRight(pn);
}
static inline bool
IsExpressionStatement(ParseNode* pn)
{
return pn->isKind(PNK_SEMI);
}
static inline ParseNode*
ExpressionStatementExpr(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_SEMI));
return UnaryKid(pn);
}
static inline PropertyName*
LoopControlMaybeLabel(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_BREAK) || pn->isKind(PNK_CONTINUE));
MOZ_ASSERT(pn->isArity(PN_NULLARY));
return pn->as<LoopControlStatement>().label();
}
static inline PropertyName*
LabeledStatementLabel(ParseNode* pn)
{
return pn->as<LabeledStatement>().label();
}
static inline ParseNode*
LabeledStatementStatement(ParseNode* pn)
{
return pn->as<LabeledStatement>().statement();
}
static double
NumberNodeValue(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_NUMBER));
return pn->pn_dval;
}
static bool
NumberNodeHasFrac(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_NUMBER));
return pn->pn_u.number.decimalPoint == HasDecimal;
}
static ParseNode*
DotBase(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_DOT));
MOZ_ASSERT(pn->isArity(PN_NAME));
return pn->expr();
}
static PropertyName*
DotMember(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_DOT));
MOZ_ASSERT(pn->isArity(PN_NAME));
return pn->pn_atom->asPropertyName();
}
static ParseNode*
ElemBase(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_ELEM));
return BinaryLeft(pn);
}
static ParseNode*
ElemIndex(ParseNode* pn)
{
MOZ_ASSERT(pn->isKind(PNK_ELEM));
return BinaryRight(pn);
}
static inline JSFunction*
FunctionObject(ParseNode* fn)
{
MOZ_ASSERT(fn->isKind(PNK_FUNCTION));
MOZ_ASSERT(fn->isArity(PN_CODE));
return fn->pn_funbox->function();
}
static inline PropertyName*
FunctionName(ParseNode* fn)
{
if (JSAtom* name = FunctionObject(fn)->explicitName())
return name->asPropertyName();
return nullptr;
}
static inline ParseNode*
FunctionStatementList(ParseNode* fn)
{
MOZ_ASSERT(fn->pn_body->isKind(PNK_PARAMSBODY));
ParseNode* last = fn->pn_body->last();
MOZ_ASSERT(last->isKind(PNK_LEXICALSCOPE));
MOZ_ASSERT(last->isEmptyScope());
ParseNode* body = last->scopeBody();
MOZ_ASSERT(body->isKind(PNK_STATEMENTLIST));
return body;
}
static inline bool
IsNormalObjectField(ExclusiveContext* cx, ParseNode* pn)
{
return pn->isKind(PNK_COLON) &&
pn->getOp() == JSOP_INITPROP &&
BinaryLeft(pn)->isKind(PNK_OBJECT_PROPERTY_NAME);
}
static inline PropertyName*
ObjectNormalFieldName(ExclusiveContext* cx, ParseNode* pn)
{
MOZ_ASSERT(IsNormalObjectField(cx, pn));
MOZ_ASSERT(BinaryLeft(pn)->isKind(PNK_OBJECT_PROPERTY_NAME));
return BinaryLeft(pn)->pn_atom->asPropertyName();
}
static inline ParseNode*
ObjectNormalFieldInitializer(ExclusiveContext* cx, ParseNode* pn)
{
MOZ_ASSERT(IsNormalObjectField(cx, pn));
return BinaryRight(pn);
}
static inline ParseNode*
MaybeInitializer(ParseNode* pn)
{
return pn->expr();
}
static inline bool
IsUseOfName(ParseNode* pn, PropertyName* name)
{
return pn->isKind(PNK_NAME) && pn->name() == name;
}
static inline bool
IsIgnoredDirectiveName(ExclusiveContext* cx, JSAtom* atom)
{
return atom != cx->names().useStrict;
}
static inline bool
IsIgnoredDirective(ExclusiveContext* cx, ParseNode* pn)
{
return pn->isKind(PNK_SEMI) &&
UnaryKid(pn) &&
UnaryKid(pn)->isKind(PNK_STRING) &&
IsIgnoredDirectiveName(cx, UnaryKid(pn)->pn_atom);
}
static inline bool
IsEmptyStatement(ParseNode* pn)
{
return pn->isKind(PNK_SEMI) && !UnaryKid(pn);
}
static inline ParseNode*
SkipEmptyStatements(ParseNode* pn)
{
while (pn && IsEmptyStatement(pn))
pn = pn->pn_next;
return pn;
}
static inline ParseNode*
NextNonEmptyStatement(ParseNode* pn)
{
return SkipEmptyStatements(pn->pn_next);
}
static bool
GetToken(AsmJSParser& parser, TokenKind* tkp)
{
TokenStream& ts = parser.tokenStream;
TokenKind tk;
while (true) {
if (!ts.getToken(&tk, TokenStream::Operand))
return false;
if (tk != TOK_SEMI)
break;
}
*tkp = tk;
return true;
}
static bool
PeekToken(AsmJSParser& parser, TokenKind* tkp)
{
TokenStream& ts = parser.tokenStream;
TokenKind tk;
while (true) {
if (!ts.peekToken(&tk, TokenStream::Operand))
return false;
if (tk != TOK_SEMI)
break;
ts.consumeKnownToken(TOK_SEMI, TokenStream::Operand);
}
*tkp = tk;
return true;
}
static bool
ParseVarOrConstStatement(AsmJSParser& parser, ParseNode** var)
{
TokenKind tk;
if (!PeekToken(parser, &tk))
return false;
if (tk != TOK_VAR && tk != TOK_CONST) {
*var = nullptr;
return true;
}
*var = parser.statementListItem(YieldIsName);
if (!*var)
return false;
MOZ_ASSERT((*var)->isKind(PNK_VAR) || (*var)->isKind(PNK_CONST));
return true;
}
/*****************************************************************************/
// Represents the type and value of an asm.js numeric literal.
//
// A literal is a double iff the literal contains a decimal point (even if the
// fractional part is 0). Otherwise, integers may be classified:
// fixnum: [0, 2^31)
// negative int: [-2^31, 0)
// big unsigned: [2^31, 2^32)
// out of range: otherwise
// Lastly, a literal may be a float literal which is any double or integer
// literal coerced with Math.fround.
//
// This class distinguishes between signed and unsigned integer SIMD types like
// Int32x4 and Uint32x4, and so does Type below. The wasm ValType and ExprType
// enums, and the wasm::Val class do not.
class NumLit
{
public:
enum Which {
Fixnum,
NegativeInt,
BigUnsigned,
Double,
Float,
Int8x16,
Int16x8,
Int32x4,
Uint8x16,
Uint16x8,
Uint32x4,
Float32x4,
Bool8x16,
Bool16x8,
Bool32x4,
OutOfRangeInt = -1
};
private:
Which which_;
union {
JS::UninitializedValue scalar_;
SimdConstant simd_;
} u;
public:
NumLit() = default;
NumLit(Which w, const Value& v) : which_(w) {
u.scalar_ = v;
MOZ_ASSERT(!isSimd());
}
NumLit(Which w, SimdConstant c) : which_(w) {
u.simd_ = c;
MOZ_ASSERT(isSimd());
}
Which which() const {
return which_;
}
int32_t toInt32() const {
MOZ_ASSERT(which_ == Fixnum || which_ == NegativeInt || which_ == BigUnsigned);
return u.scalar_.asValueRef().toInt32();
}
uint32_t toUint32() const {
return (uint32_t)toInt32();
}
RawF64 toDouble() const {
MOZ_ASSERT(which_ == Double);
return RawF64(u.scalar_.asValueRef().toDouble());
}
RawF32 toFloat() const {
MOZ_ASSERT(which_ == Float);
return RawF32(float(u.scalar_.asValueRef().toDouble()));
}
Value scalarValue() const {
MOZ_ASSERT(which_ != OutOfRangeInt);
return u.scalar_.asValueRef();
}
bool isSimd() const
{
return which_ == Int8x16 || which_ == Uint8x16 || which_ == Int16x8 ||
which_ == Uint16x8 || which_ == Int32x4 || which_ == Uint32x4 ||
which_ == Float32x4 || which_ == Bool8x16 || which_ == Bool16x8 ||
which_ == Bool32x4;
}
const SimdConstant& simdValue() const {
MOZ_ASSERT(isSimd());
return u.simd_;
}
bool valid() const {
return which_ != OutOfRangeInt;
}
bool isZeroBits() const {
MOZ_ASSERT(valid());
switch (which()) {
case NumLit::Fixnum:
case NumLit::NegativeInt:
case NumLit::BigUnsigned:
return toInt32() == 0;
case NumLit::Double:
return toDouble().bits() == 0;
case NumLit::Float:
return toFloat().bits() == 0;
case NumLit::Int8x16:
case NumLit::Uint8x16:
case NumLit::Bool8x16:
return simdValue() == SimdConstant::SplatX16(0);
case NumLit::Int16x8:
case NumLit::Uint16x8:
case NumLit::Bool16x8:
return simdValue() == SimdConstant::SplatX8(0);
case NumLit::Int32x4:
case NumLit::Uint32x4:
case NumLit::Bool32x4:
return simdValue() == SimdConstant::SplatX4(0);
case NumLit::Float32x4:
return simdValue() == SimdConstant::SplatX4(0.f);
case NumLit::OutOfRangeInt:
MOZ_CRASH("can't be here because of valid() check above");
}
return false;
}
Val value() const {
switch (which_) {
case NumLit::Fixnum:
case NumLit::NegativeInt:
case NumLit::BigUnsigned:
return Val(toUint32());
case NumLit::Float:
return Val(toFloat());
case NumLit::Double:
return Val(toDouble());
case NumLit::Int8x16:
case NumLit::Uint8x16:
return Val(simdValue().asInt8x16());
case NumLit::Int16x8:
case NumLit::Uint16x8:
return Val(simdValue().asInt16x8());
case NumLit::Int32x4:
case NumLit::Uint32x4:
return Val(simdValue().asInt32x4());
case NumLit::Float32x4:
return Val(simdValue().asFloat32x4());
case NumLit::Bool8x16:
return Val(simdValue().asInt8x16(), ValType::B8x16);
case NumLit::Bool16x8:
return Val(simdValue().asInt16x8(), ValType::B16x8);
case NumLit::Bool32x4:
return Val(simdValue().asInt32x4(), ValType::B32x4);
case NumLit::OutOfRangeInt:;
}
MOZ_CRASH("bad literal");
}
};
// Represents the type of a general asm.js expression.
//
// A canonical subset of types representing the coercion targets: Int, Float,
// Double, and the SIMD types. This is almost equivalent to wasm::ValType,
// except the integer SIMD types have signed/unsigned variants.
//
// Void is also part of the canonical subset which then maps to wasm::ExprType.
//
// Note that while the canonical subset distinguishes signed and unsigned SIMD
// types, it only uses |Int| to represent signed and unsigned 32-bit integers.
// This is because the scalar coersions x|0 and x>>>0 work with any kind of
// integer input, while the SIMD check functions throw a TypeError if the passed
// type doesn't match.
//
class Type
{
public:
enum Which {
Fixnum = NumLit::Fixnum,
Signed = NumLit::NegativeInt,
Unsigned = NumLit::BigUnsigned,
DoubleLit = NumLit::Double,
Float = NumLit::Float,
Int8x16 = NumLit::Int8x16,
Int16x8 = NumLit::Int16x8,
Int32x4 = NumLit::Int32x4,
Uint8x16 = NumLit::Uint8x16,
Uint16x8 = NumLit::Uint16x8,
Uint32x4 = NumLit::Uint32x4,
Float32x4 = NumLit::Float32x4,
Bool8x16 = NumLit::Bool8x16,
Bool16x8 = NumLit::Bool16x8,
Bool32x4 = NumLit::Bool32x4,
Double,
MaybeDouble,
MaybeFloat,
Floatish,
Int,
Intish,
Void
};
private:
Which which_;
public:
Type() = default;
MOZ_IMPLICIT Type(Which w) : which_(w) {}
MOZ_IMPLICIT Type(SimdType type) {
switch (type) {
case SimdType::Int8x16: which_ = Int8x16; return;
case SimdType::Int16x8: which_ = Int16x8; return;
case SimdType::Int32x4: which_ = Int32x4; return;
case SimdType::Uint8x16: which_ = Uint8x16; return;
case SimdType::Uint16x8: which_ = Uint16x8; return;
case SimdType::Uint32x4: which_ = Uint32x4; return;
case SimdType::Float32x4: which_ = Float32x4; return;
case SimdType::Bool8x16: which_ = Bool8x16; return;
case SimdType::Bool16x8: which_ = Bool16x8; return;
case SimdType::Bool32x4: which_ = Bool32x4; return;
default: break;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("bad SimdType");
}
// Map an already canonicalized Type to the return type of a function call.
static Type ret(Type t) {
MOZ_ASSERT(t.isCanonical());
// The 32-bit external type is Signed, not Int.
return t.isInt() ? Signed: t;
}
static Type lit(const NumLit& lit) {
MOZ_ASSERT(lit.valid());
Which which = Type::Which(lit.which());
MOZ_ASSERT(which >= Fixnum && which <= Bool32x4);
Type t;
t.which_ = which;
return t;
}
// Map |t| to one of the canonical vartype representations of a
// wasm::ExprType.
static Type canonicalize(Type t) {
switch(t.which()) {
case Fixnum:
case Signed:
case Unsigned:
case Int:
return Int;
case Float:
return Float;
case DoubleLit:
case Double:
return Double;
case Void:
return Void;
case Int8x16:
case Int16x8:
case Int32x4:
case Uint8x16:
case Uint16x8:
case Uint32x4:
case Float32x4:
case Bool8x16:
case Bool16x8:
case Bool32x4:
return t;
case MaybeDouble:
case MaybeFloat:
case Floatish:
case Intish:
// These types need some kind of coercion, they can't be mapped
// to an ExprType.
break;
}
MOZ_CRASH("Invalid vartype");
}
Which which() const { return which_; }
bool operator==(Type rhs) const { return which_ == rhs.which_; }
bool operator!=(Type rhs) const { return which_ != rhs.which_; }
bool operator<=(Type rhs) const {
switch (rhs.which_) {
case Signed: return isSigned();
case Unsigned: return isUnsigned();
case DoubleLit: return isDoubleLit();
case Double: return isDouble();
case Float: return isFloat();
case Int8x16: return isInt8x16();
case Int16x8: return isInt16x8();
case Int32x4: return isInt32x4();
case Uint8x16: return isUint8x16();
case Uint16x8: return isUint16x8();
case Uint32x4: return isUint32x4();
case Float32x4: return isFloat32x4();
case Bool8x16: return isBool8x16();
case Bool16x8: return isBool16x8();
case Bool32x4: return isBool32x4();
case MaybeDouble: return isMaybeDouble();
case MaybeFloat: return isMaybeFloat();
case Floatish: return isFloatish();
case Int: return isInt();
case Intish: return isIntish();
case Fixnum: return isFixnum();
case Void: return isVoid();
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("unexpected rhs type");
}
bool isFixnum() const {
return which_ == Fixnum;
}
bool isSigned() const {
return which_ == Signed || which_ == Fixnum;
}
bool isUnsigned() const {
return which_ == Unsigned || which_ == Fixnum;
}
bool isInt() const {
return isSigned() || isUnsigned() || which_ == Int;
}
bool isIntish() const {
return isInt() || which_ == Intish;
}
bool isDoubleLit() const {
return which_ == DoubleLit;
}
bool isDouble() const {
return isDoubleLit() || which_ == Double;
}
bool isMaybeDouble() const {
return isDouble() || which_ == MaybeDouble;
}
bool isFloat() const {
return which_ == Float;
}
bool isMaybeFloat() const {
return isFloat() || which_ == MaybeFloat;
}
bool isFloatish() const {
return isMaybeFloat() || which_ == Floatish;
}
bool isVoid() const {
return which_ == Void;
}
bool isExtern() const {
return isDouble() || isSigned();
}
bool isInt8x16() const {
return which_ == Int8x16;
}
bool isInt16x8() const {
return which_ == Int16x8;
}
bool isInt32x4() const {
return which_ == Int32x4;
}
bool isUint8x16() const {
return which_ == Uint8x16;
}
bool isUint16x8() const {
return which_ == Uint16x8;
}
bool isUint32x4() const {
return which_ == Uint32x4;
}
bool isFloat32x4() const {
return which_ == Float32x4;
}
bool isBool8x16() const {
return which_ == Bool8x16;
}
bool isBool16x8() const {
return which_ == Bool16x8;
}
bool isBool32x4() const {
return which_ == Bool32x4;
}
bool isSimd() const {
return isInt8x16() || isInt16x8() || isInt32x4() || isUint8x16() || isUint16x8() ||
isUint32x4() || isFloat32x4() || isBool8x16() || isBool16x8() || isBool32x4();
}
bool isUnsignedSimd() const {
return isUint8x16() || isUint16x8() || isUint32x4();
}
// Check if this is one of the valid types for a function argument.
bool isArgType() const {
return isInt() || isFloat() || isDouble() || (isSimd() && !isUnsignedSimd());
}
// Check if this is one of the valid types for a function return value.
bool isReturnType() const {
return isSigned() || isFloat() || isDouble() || (isSimd() && !isUnsignedSimd()) ||
isVoid();
}
// Check if this is one of the valid types for a global variable.
bool isGlobalVarType() const {
return isArgType();
}
// Check if this is one of the canonical vartype representations of a
// wasm::ExprType. See Type::canonicalize().
bool isCanonical() const {
switch (which()) {
case Int:
case Float:
case Double:
case Void:
return true;
default:
return isSimd();
}
}
// Check if this is a canonical representation of a wasm::ValType.
bool isCanonicalValType() const {
return !isVoid() && isCanonical();
}
// Convert this canonical type to a wasm::ExprType.
ExprType canonicalToExprType() const {
switch (which()) {
case Int: return ExprType::I32;
case Float: return ExprType::F32;
case Double: return ExprType::F64;
case Void: return ExprType::Void;
case Uint8x16:
case Int8x16: return ExprType::I8x16;
case Uint16x8:
case Int16x8: return ExprType::I16x8;
case Uint32x4:
case Int32x4: return ExprType::I32x4;
case Float32x4: return ExprType::F32x4;
case Bool8x16: return ExprType::B8x16;
case Bool16x8: return ExprType::B16x8;
case Bool32x4: return ExprType::B32x4;
default: MOZ_CRASH("Need canonical type");
}
}
// Convert this canonical type to a wasm::ValType.
ValType canonicalToValType() const {
return NonVoidToValType(canonicalToExprType());
}
// Convert this type to a wasm::ExprType for use in a wasm
// block signature. This works for all types, including non-canonical
// ones. Consequently, the type isn't valid for subsequent asm.js
// validation; it's only valid for use in producing wasm.
ExprType toWasmBlockSignatureType() const {
switch (which()) {
case Fixnum:
case Signed:
case Unsigned:
case Int:
case Intish:
return ExprType::I32;
case Float:
case MaybeFloat:
case Floatish:
return ExprType::F32;
case DoubleLit:
case Double:
case MaybeDouble:
return ExprType::F64;
case Void:
return ExprType::Void;
case Uint8x16:
case Int8x16: return ExprType::I8x16;
case Uint16x8:
case Int16x8: return ExprType::I16x8;
case Uint32x4:
case Int32x4: return ExprType::I32x4;
case Float32x4: return ExprType::F32x4;
case Bool8x16: return ExprType::B8x16;
case Bool16x8: return ExprType::B16x8;
case Bool32x4: return ExprType::B32x4;
}
MOZ_CRASH("Invalid Type");
}
const char* toChars() const {
switch (which_) {
case Double: return "double";
case DoubleLit: return "doublelit";
case MaybeDouble: return "double?";
case Float: return "float";
case Floatish: return "floatish";
case MaybeFloat: return "float?";
case Fixnum: return "fixnum";
case Int: return "int";
case Signed: return "signed";
case Unsigned: return "unsigned";
case Intish: return "intish";
case Int8x16: return "int8x16";
case Int16x8: return "int16x8";
case Int32x4: return "int32x4";
case Uint8x16: return "uint8x16";
case Uint16x8: return "uint16x8";
case Uint32x4: return "uint32x4";
case Float32x4: return "float32x4";
case Bool8x16: return "bool8x16";
case Bool16x8: return "bool16x8";
case Bool32x4: return "bool32x4";
case Void: return "void";
}
MOZ_CRASH("Invalid Type");
}
};
static const unsigned VALIDATION_LIFO_DEFAULT_CHUNK_SIZE = 4 * 1024;
// The ModuleValidator encapsulates the entire validation of an asm.js module.
// Its lifetime goes from the validation of the top components of an asm.js
// module (all the globals), the emission of bytecode for all the functions in
// the module and the validation of function's pointer tables. It also finishes
// the compilation of all the module's stubs.
//
// Rooting note: ModuleValidator is a stack class that contains unrooted
// PropertyName (JSAtom) pointers. This is safe because it cannot be
// constructed without a TokenStream reference. TokenStream is itself a stack
// class that cannot be constructed without an AutoKeepAtoms being live on the
// stack, which prevents collection of atoms.
//
// ModuleValidator is marked as rooted in the rooting analysis. Don't add
// non-JSAtom pointers, or this will break!
class MOZ_STACK_CLASS ModuleValidator
{
public:
class Func
{
PropertyName* name_;
uint32_t firstUse_;
uint32_t index_;
uint32_t srcBegin_;
uint32_t srcEnd_;
bool defined_;
public:
Func(PropertyName* name, uint32_t firstUse, uint32_t index)
: name_(name), firstUse_(firstUse), index_(index),
srcBegin_(0), srcEnd_(0), defined_(false)
{}
PropertyName* name() const { return name_; }
uint32_t firstUse() const { return firstUse_; }
bool defined() const { return defined_; }
uint32_t index() const { return index_; }
void define(ParseNode* fn) {
MOZ_ASSERT(!defined_);
defined_ = true;
srcBegin_ = fn->pn_pos.begin;
srcEnd_ = fn->pn_pos.end;
}
uint32_t srcBegin() const { MOZ_ASSERT(defined_); return srcBegin_; }
uint32_t srcEnd() const { MOZ_ASSERT(defined_); return srcEnd_; }
};
typedef Vector<const Func*> ConstFuncVector;
typedef Vector<Func*> FuncVector;
class FuncPtrTable
{
uint32_t sigIndex_;
PropertyName* name_;
uint32_t firstUse_;
uint32_t mask_;
bool defined_;
FuncPtrTable(FuncPtrTable&& rhs) = delete;
public:
FuncPtrTable(uint32_t sigIndex, PropertyName* name, uint32_t firstUse, uint32_t mask)
: sigIndex_(sigIndex), name_(name), firstUse_(firstUse), mask_(mask), defined_(false)
{}
uint32_t sigIndex() const { return sigIndex_; }
PropertyName* name() const { return name_; }
uint32_t firstUse() const { return firstUse_; }
unsigned mask() const { return mask_; }
bool defined() const { return defined_; }
void define() { MOZ_ASSERT(!defined_); defined_ = true; }
};
typedef Vector<FuncPtrTable*> FuncPtrTableVector;
class Global
{
public:
enum Which {
Variable,
ConstantLiteral,
ConstantImport,
Function,
FuncPtrTable,
FFI,
ArrayView,
ArrayViewCtor,
MathBuiltinFunction,
AtomicsBuiltinFunction,
SimdCtor,
SimdOp
};
private:
Which which_;
union {
struct {
Type::Which type_;
unsigned index_;
NumLit literalValue_;
} varOrConst;
uint32_t funcIndex_;
uint32_t funcPtrTableIndex_;
uint32_t ffiIndex_;
struct {
Scalar::Type viewType_;
} viewInfo;
AsmJSMathBuiltinFunction mathBuiltinFunc_;
AsmJSAtomicsBuiltinFunction atomicsBuiltinFunc_;
SimdType simdCtorType_;
struct {
SimdType type_;
SimdOperation which_;
} simdOp;
} u;
friend class ModuleValidator;
friend class js::LifoAlloc;
explicit Global(Which which) : which_(which) {}
public:
Which which() const {
return which_;
}
Type varOrConstType() const {
MOZ_ASSERT(which_ == Variable || which_ == ConstantLiteral || which_ == ConstantImport);
return u.varOrConst.type_;
}
unsigned varOrConstIndex() const {
MOZ_ASSERT(which_ == Variable || which_ == ConstantImport);
return u.varOrConst.index_;
}
bool isConst() const {
return which_ == ConstantLiteral || which_ == ConstantImport;
}
NumLit constLiteralValue() const {
MOZ_ASSERT(which_ == ConstantLiteral);
return u.varOrConst.literalValue_;
}
uint32_t funcIndex() const {
MOZ_ASSERT(which_ == Function);
return u.funcIndex_;
}
uint32_t funcPtrTableIndex() const {
MOZ_ASSERT(which_ == FuncPtrTable);
return u.funcPtrTableIndex_;
}
unsigned ffiIndex() const {
MOZ_ASSERT(which_ == FFI);
return u.ffiIndex_;
}
bool isAnyArrayView() const {
return which_ == ArrayView || which_ == ArrayViewCtor;
}
Scalar::Type viewType() const {
MOZ_ASSERT(isAnyArrayView());
return u.viewInfo.viewType_;
}
bool isMathFunction() const {
return which_ == MathBuiltinFunction;
}
AsmJSMathBuiltinFunction mathBuiltinFunction() const {
MOZ_ASSERT(which_ == MathBuiltinFunction);
return u.mathBuiltinFunc_;
}
bool isAtomicsFunction() const {
return which_ == AtomicsBuiltinFunction;
}
AsmJSAtomicsBuiltinFunction atomicsBuiltinFunction() const {
MOZ_ASSERT(which_ == AtomicsBuiltinFunction);
return u.atomicsBuiltinFunc_;
}
bool isSimdCtor() const {
return which_ == SimdCtor;
}
SimdType simdCtorType() const {
MOZ_ASSERT(which_ == SimdCtor);
return u.simdCtorType_;
}
bool isSimdOperation() const {
return which_ == SimdOp;
}
SimdOperation simdOperation() const {
MOZ_ASSERT(which_ == SimdOp);
return u.simdOp.which_;
}
SimdType simdOperationType() const {
MOZ_ASSERT(which_ == SimdOp);
return u.simdOp.type_;
}
};
struct MathBuiltin
{
enum Kind { Function, Constant };
Kind kind;
union {
double cst;
AsmJSMathBuiltinFunction func;
} u;
MathBuiltin() : kind(Kind(-1)) {}
explicit MathBuiltin(double cst) : kind(Constant) {
u.cst = cst;
}
explicit MathBuiltin(AsmJSMathBuiltinFunction func) : kind(Function) {
u.func = func;
}
};
struct ArrayView
{
ArrayView(PropertyName* name, Scalar::Type type)
: name(name), type(type)
{}
PropertyName* name;
Scalar::Type type;
};
private:
class NamedSig
{
PropertyName* name_;
const SigWithId* sig_;
public:
NamedSig(PropertyName* name, const SigWithId& sig)
: name_(name), sig_(&sig)
{}
PropertyName* name() const {
return name_;
}
const Sig& sig() const {
return *sig_;
}
// Implement HashPolicy:
struct Lookup {
PropertyName* name;
const Sig& sig;
Lookup(PropertyName* name, const Sig& sig) : name(name), sig(sig) {}
};
static HashNumber hash(Lookup l) {
return HashGeneric(l.name, l.sig.hash());
}
static bool match(NamedSig lhs, Lookup rhs) {
return lhs.name_ == rhs.name && *lhs.sig_ == rhs.sig;
}
};
typedef HashMap<NamedSig, uint32_t, NamedSig> ImportMap;
typedef HashMap<const SigWithId*, uint32_t, SigHashPolicy> SigMap;
typedef HashMap<PropertyName*, Global*> GlobalMap;
typedef HashMap<PropertyName*, MathBuiltin> MathNameMap;
typedef HashMap<PropertyName*, AsmJSAtomicsBuiltinFunction> AtomicsNameMap;
typedef HashMap<PropertyName*, SimdOperation> SimdOperationNameMap;
typedef Vector<ArrayView> ArrayViewVector;
ExclusiveContext* cx_;
AsmJSParser& parser_;
ParseNode* moduleFunctionNode_;
PropertyName* moduleFunctionName_;
PropertyName* globalArgumentName_;
PropertyName* importArgumentName_;
PropertyName* bufferArgumentName_;
MathNameMap standardLibraryMathNames_;
AtomicsNameMap standardLibraryAtomicsNames_;
SimdOperationNameMap standardLibrarySimdOpNames_;
RootedFunction dummyFunction_;
// Validation-internal state:
LifoAlloc validationLifo_;
FuncVector functions_;
FuncPtrTableVector funcPtrTables_;
GlobalMap globalMap_;
SigMap sigMap_;
ImportMap importMap_;
ArrayViewVector arrayViews_;
bool atomicsPresent_;
bool simdPresent_;
// State used to build the AsmJSModule in finish():
ModuleGenerator mg_;
MutableAsmJSMetadata asmJSMetadata_;
// Error reporting:
UniqueChars errorString_;
uint32_t errorOffset_;
bool errorOverRecursed_;
// Helpers:
bool addStandardLibraryMathName(const char* name, AsmJSMathBuiltinFunction func) {
JSAtom* atom = Atomize(cx_, name, strlen(name));
if (!atom)
return false;
MathBuiltin builtin(func);
return standardLibraryMathNames_.putNew(atom->asPropertyName(), builtin);
}
bool addStandardLibraryMathName(const char* name, double cst) {
JSAtom* atom = Atomize(cx_, name, strlen(name));
if (!atom)
return false;
MathBuiltin builtin(cst);
return standardLibraryMathNames_.putNew(atom->asPropertyName(), builtin);
}
bool addStandardLibraryAtomicsName(const char* name, AsmJSAtomicsBuiltinFunction func) {
JSAtom* atom = Atomize(cx_, name, strlen(name));
if (!atom)
return false;
return standardLibraryAtomicsNames_.putNew(atom->asPropertyName(), func);
}
bool addStandardLibrarySimdOpName(const char* name, SimdOperation op) {
JSAtom* atom = Atomize(cx_, name, strlen(name));
if (!atom)
return false;
return standardLibrarySimdOpNames_.putNew(atom->asPropertyName(), op);
}
bool newSig(Sig&& sig, uint32_t* sigIndex) {
*sigIndex = 0;
if (mg_.numSigs() >= MaxSigs)
return failCurrentOffset("too many signatures");
*sigIndex = mg_.numSigs();
mg_.initSig(*sigIndex, Move(sig));
return true;
}
bool declareSig(Sig&& sig, uint32_t* sigIndex) {
SigMap::AddPtr p = sigMap_.lookupForAdd(sig);
if (p) {
*sigIndex = p->value();
MOZ_ASSERT(mg_.sig(*sigIndex) == sig);
return true;
}
return newSig(Move(sig), sigIndex) &&
sigMap_.add(p, &mg_.sig(*sigIndex), *sigIndex);
}
public:
ModuleValidator(ExclusiveContext* cx, AsmJSParser& parser, ParseNode* moduleFunctionNode)
: cx_(cx),
parser_(parser),
moduleFunctionNode_(moduleFunctionNode),
moduleFunctionName_(FunctionName(moduleFunctionNode)),
globalArgumentName_(nullptr),
importArgumentName_(nullptr),
bufferArgumentName_(nullptr),
standardLibraryMathNames_(cx),
standardLibraryAtomicsNames_(cx),
standardLibrarySimdOpNames_(cx),
dummyFunction_(cx),
validationLifo_(VALIDATION_LIFO_DEFAULT_CHUNK_SIZE),
functions_(cx),
funcPtrTables_(cx),
globalMap_(cx),
sigMap_(cx),
importMap_(cx),
arrayViews_(cx),
atomicsPresent_(false),
simdPresent_(false),
mg_(ImportVector()),
errorString_(nullptr),
errorOffset_(UINT32_MAX),
errorOverRecursed_(false)
{}
~ModuleValidator() {
if (errorString_) {
MOZ_ASSERT(errorOffset_ != UINT32_MAX);
tokenStream().reportAsmJSError(errorOffset_,
JSMSG_USE_ASM_TYPE_FAIL,
errorString_.get());
}
if (errorOverRecursed_)
ReportOverRecursed(cx_);
}
bool init() {
asmJSMetadata_ = cx_->new_<AsmJSMetadata>();
if (!asmJSMetadata_)
return false;
asmJSMetadata_->preludeStart = moduleFunctionNode_->pn_funbox->preludeStart;
asmJSMetadata_->srcStart = moduleFunctionNode_->pn_body->pn_pos.begin;
asmJSMetadata_->srcBodyStart = parser_.tokenStream.currentToken().pos.end;
asmJSMetadata_->strict = parser_.pc->sc()->strict() &&
!parser_.pc->sc()->hasExplicitUseStrict();
asmJSMetadata_->scriptSource.reset(parser_.ss);
if (!globalMap_.init() || !sigMap_.init() || !importMap_.init())
return false;
if (!standardLibraryMathNames_.init() ||
!addStandardLibraryMathName("sin", AsmJSMathBuiltin_sin) ||
!addStandardLibraryMathName("cos", AsmJSMathBuiltin_cos) ||
!addStandardLibraryMathName("tan", AsmJSMathBuiltin_tan) ||
!addStandardLibraryMathName("asin", AsmJSMathBuiltin_asin) ||
!addStandardLibraryMathName("acos", AsmJSMathBuiltin_acos) ||
!addStandardLibraryMathName("atan", AsmJSMathBuiltin_atan) ||
!addStandardLibraryMathName("ceil", AsmJSMathBuiltin_ceil) ||
!addStandardLibraryMathName("floor", AsmJSMathBuiltin_floor) ||
!addStandardLibraryMathName("exp", AsmJSMathBuiltin_exp) ||
!addStandardLibraryMathName("log", AsmJSMathBuiltin_log) ||
!addStandardLibraryMathName("pow", AsmJSMathBuiltin_pow) ||
!addStandardLibraryMathName("sqrt", AsmJSMathBuiltin_sqrt) ||
!addStandardLibraryMathName("abs", AsmJSMathBuiltin_abs) ||
!addStandardLibraryMathName("atan2", AsmJSMathBuiltin_atan2) ||
!addStandardLibraryMathName("imul", AsmJSMathBuiltin_imul) ||
!addStandardLibraryMathName("clz32", AsmJSMathBuiltin_clz32) ||
!addStandardLibraryMathName("fround", AsmJSMathBuiltin_fround) ||
!addStandardLibraryMathName("min", AsmJSMathBuiltin_min) ||
!addStandardLibraryMathName("max", AsmJSMathBuiltin_max) ||
!addStandardLibraryMathName("E", M_E) ||
!addStandardLibraryMathName("LN10", M_LN10) ||
!addStandardLibraryMathName("LN2", M_LN2) ||
!addStandardLibraryMathName("LOG2E", M_LOG2E) ||
!addStandardLibraryMathName("LOG10E", M_LOG10E) ||
!addStandardLibraryMathName("PI", M_PI) ||
!addStandardLibraryMathName("SQRT1_2", M_SQRT1_2) ||
!addStandardLibraryMathName("SQRT2", M_SQRT2))
{
return false;
}
if (!standardLibraryAtomicsNames_.init() ||
!addStandardLibraryAtomicsName("compareExchange", AsmJSAtomicsBuiltin_compareExchange) ||
!addStandardLibraryAtomicsName("exchange", AsmJSAtomicsBuiltin_exchange) ||
!addStandardLibraryAtomicsName("load", AsmJSAtomicsBuiltin_load) ||
!addStandardLibraryAtomicsName("store", AsmJSAtomicsBuiltin_store) ||
!addStandardLibraryAtomicsName("add", AsmJSAtomicsBuiltin_add) ||
!addStandardLibraryAtomicsName("sub", AsmJSAtomicsBuiltin_sub) ||
!addStandardLibraryAtomicsName("and", AsmJSAtomicsBuiltin_and) ||
!addStandardLibraryAtomicsName("or", AsmJSAtomicsBuiltin_or) ||
!addStandardLibraryAtomicsName("xor", AsmJSAtomicsBuiltin_xor) ||
!addStandardLibraryAtomicsName("isLockFree", AsmJSAtomicsBuiltin_isLockFree))
{
return false;
}
#define ADDSTDLIBSIMDOPNAME(op) || !addStandardLibrarySimdOpName(#op, SimdOperation::Fn_##op)
if (!standardLibrarySimdOpNames_.init()
FORALL_SIMD_ASMJS_OP(ADDSTDLIBSIMDOPNAME))
{
return false;
}
#undef ADDSTDLIBSIMDOPNAME
// This flows into FunctionBox, so must be tenured.
dummyFunction_ = NewScriptedFunction(cx_, 0, JSFunction::INTERPRETED, nullptr,
/* proto = */ nullptr, gc::AllocKind::FUNCTION,
TenuredObject);
if (!dummyFunction_)
return false;
ScriptedCaller scriptedCaller;
if (parser_.ss->filename()) {
scriptedCaller.line = scriptedCaller.column = 0; // unused
scriptedCaller.filename = DuplicateString(parser_.ss->filename());
if (!scriptedCaller.filename)
return false;
}
CompileArgs args;
if (!args.initFromContext(cx_, Move(scriptedCaller)))
return false;
auto genData = MakeUnique<ModuleGeneratorData>(ModuleKind::AsmJS);
if (!genData ||
!genData->sigs.resize(MaxSigs) ||
!genData->funcSigs.resize(MaxFuncs) ||
!genData->funcImportGlobalDataOffsets.resize(AsmJSMaxImports) ||
!genData->tables.resize(MaxTables) ||
!genData->asmJSSigToTableIndex.resize(MaxSigs))
{
return false;
}
genData->minMemoryLength = RoundUpToNextValidAsmJSHeapLength(0);
if (!mg_.init(Move(genData), args, asmJSMetadata_.get()))
return false;
return true;
}
ExclusiveContext* cx() const { return cx_; }
PropertyName* moduleFunctionName() const { return moduleFunctionName_; }
PropertyName* globalArgumentName() const { return globalArgumentName_; }
PropertyName* importArgumentName() const { return importArgumentName_; }
PropertyName* bufferArgumentName() const { return bufferArgumentName_; }
ModuleGenerator& mg() { return mg_; }
AsmJSParser& parser() const { return parser_; }
TokenStream& tokenStream() const { return parser_.tokenStream; }
RootedFunction& dummyFunction() { return dummyFunction_; }
bool supportsSimd() const { return cx_->jitSupportsSimd(); }
bool atomicsPresent() const { return atomicsPresent_; }
uint32_t minMemoryLength() const { return mg_.minMemoryLength(); }
void initModuleFunctionName(PropertyName* name) {
MOZ_ASSERT(!moduleFunctionName_);
moduleFunctionName_ = name;
}
MOZ_MUST_USE bool initGlobalArgumentName(PropertyName* n) {
MOZ_ASSERT(n->isTenured());
globalArgumentName_ = n;
if (n) {
asmJSMetadata_->globalArgumentName = StringToNewUTF8CharsZ(cx_, *n);
if (!asmJSMetadata_->globalArgumentName)
return false;
}
return true;
}
MOZ_MUST_USE bool initImportArgumentName(PropertyName* n) {
MOZ_ASSERT(n->isTenured());
importArgumentName_ = n;
if (n) {
asmJSMetadata_->importArgumentName = StringToNewUTF8CharsZ(cx_, *n);
if (!asmJSMetadata_->importArgumentName)
return false;
}
return true;
}
MOZ_MUST_USE bool initBufferArgumentName(PropertyName* n) {
MOZ_ASSERT(n->isTenured());
bufferArgumentName_ = n;
if (n) {
asmJSMetadata_->bufferArgumentName = StringToNewUTF8CharsZ(cx_, *n);
if (!asmJSMetadata_->bufferArgumentName)
return false;
}
return true;
}
bool addGlobalVarInit(PropertyName* var, const NumLit& lit, Type type, bool isConst) {
MOZ_ASSERT(type.isGlobalVarType());
MOZ_ASSERT(type == Type::canonicalize(Type::lit(lit)));
uint32_t index;
if (!mg_.addGlobal(type.canonicalToValType(), isConst, &index))
return false;
Global::Which which = isConst ? Global::ConstantLiteral : Global::Variable;
Global* global = validationLifo_.new_<Global>(which);
if (!global)
return false;
global->u.varOrConst.index_ = index;
global->u.varOrConst.type_ = (isConst ? Type::lit(lit) : type).which();
if (isConst)
global->u.varOrConst.literalValue_ = lit;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::Variable, nullptr);
g.pod.u.var.initKind_ = AsmJSGlobal::InitConstant;
g.pod.u.var.u.val_ = lit.value();
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addGlobalVarImport(PropertyName* var, PropertyName* field, Type type, bool isConst) {
MOZ_ASSERT(type.isGlobalVarType());
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
uint32_t index;
ValType valType = type.canonicalToValType();
if (!mg_.addGlobal(valType, isConst, &index))
return false;
Global::Which which = isConst ? Global::ConstantImport : Global::Variable;
Global* global = validationLifo_.new_<Global>(which);
if (!global)
return false;
global->u.varOrConst.index_ = index;
global->u.varOrConst.type_ = type.which();
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::Variable, Move(fieldChars));
g.pod.u.var.initKind_ = AsmJSGlobal::InitImport;
g.pod.u.var.u.importType_ = valType;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addArrayView(PropertyName* var, Scalar::Type vt, PropertyName* maybeField) {
UniqueChars fieldChars;
if (maybeField) {
fieldChars = StringToNewUTF8CharsZ(cx_, *maybeField);
if (!fieldChars)
return false;
}
if (!arrayViews_.append(ArrayView(var, vt)))
return false;
Global* global = validationLifo_.new_<Global>(Global::ArrayView);
if (!global)
return false;
global->u.viewInfo.viewType_ = vt;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::ArrayView, Move(fieldChars));
g.pod.u.viewType_ = vt;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addMathBuiltinFunction(PropertyName* var, AsmJSMathBuiltinFunction func,
PropertyName* field)
{
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
Global* global = validationLifo_.new_<Global>(Global::MathBuiltinFunction);
if (!global)
return false;
global->u.mathBuiltinFunc_ = func;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::MathBuiltinFunction, Move(fieldChars));
g.pod.u.mathBuiltinFunc_ = func;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
private:
bool addGlobalDoubleConstant(PropertyName* var, double constant) {
Global* global = validationLifo_.new_<Global>(Global::ConstantLiteral);
if (!global)
return false;
global->u.varOrConst.type_ = Type::Double;
global->u.varOrConst.literalValue_ = NumLit(NumLit::Double, DoubleValue(constant));
return globalMap_.putNew(var, global);
}
public:
bool addMathBuiltinConstant(PropertyName* var, double constant, PropertyName* field) {
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
if (!addGlobalDoubleConstant(var, constant))
return false;
AsmJSGlobal g(AsmJSGlobal::Constant, Move(fieldChars));
g.pod.u.constant.value_ = constant;
g.pod.u.constant.kind_ = AsmJSGlobal::MathConstant;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addGlobalConstant(PropertyName* var, double constant, PropertyName* field) {
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
if (!addGlobalDoubleConstant(var, constant))
return false;
AsmJSGlobal g(AsmJSGlobal::Constant, Move(fieldChars));
g.pod.u.constant.value_ = constant;
g.pod.u.constant.kind_ = AsmJSGlobal::GlobalConstant;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addAtomicsBuiltinFunction(PropertyName* var, AsmJSAtomicsBuiltinFunction func,
PropertyName* field)
{
if (!JitOptions.asmJSAtomicsEnable)
return failCurrentOffset("asm.js Atomics only enabled in wasm test mode");
atomicsPresent_ = true;
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
Global* global = validationLifo_.new_<Global>(Global::AtomicsBuiltinFunction);
if (!global)
return false;
global->u.atomicsBuiltinFunc_ = func;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::AtomicsBuiltinFunction, Move(fieldChars));
g.pod.u.atomicsBuiltinFunc_ = func;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addSimdCtor(PropertyName* var, SimdType type, PropertyName* field) {
simdPresent_ = true;
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
Global* global = validationLifo_.new_<Global>(Global::SimdCtor);
if (!global)
return false;
global->u.simdCtorType_ = type;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::SimdCtor, Move(fieldChars));
g.pod.u.simdCtorType_ = type;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addSimdOperation(PropertyName* var, SimdType type, SimdOperation op, PropertyName* field) {
simdPresent_ = true;
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
Global* global = validationLifo_.new_<Global>(Global::SimdOp);
if (!global)
return false;
global->u.simdOp.type_ = type;
global->u.simdOp.which_ = op;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::SimdOp, Move(fieldChars));
g.pod.u.simdOp.type_ = type;
g.pod.u.simdOp.which_ = op;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addArrayViewCtor(PropertyName* var, Scalar::Type vt, PropertyName* field) {
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
Global* global = validationLifo_.new_<Global>(Global::ArrayViewCtor);
if (!global)
return false;
global->u.viewInfo.viewType_ = vt;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::ArrayViewCtor, Move(fieldChars));
g.pod.u.viewType_ = vt;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addFFI(PropertyName* var, PropertyName* field) {
UniqueChars fieldChars = StringToNewUTF8CharsZ(cx_, *field);
if (!fieldChars)
return false;
if (asmJSMetadata_->numFFIs == UINT32_MAX)
return false;
uint32_t ffiIndex = asmJSMetadata_->numFFIs++;
Global* global = validationLifo_.new_<Global>(Global::FFI);
if (!global)
return false;
global->u.ffiIndex_ = ffiIndex;
if (!globalMap_.putNew(var, global))
return false;
AsmJSGlobal g(AsmJSGlobal::FFI, Move(fieldChars));
g.pod.u.ffiIndex_ = ffiIndex;
return asmJSMetadata_->asmJSGlobals.append(Move(g));
}
bool addExportField(ParseNode* pn, const Func& func, PropertyName* maybeField) {
// Record the field name of this export.
CacheableChars fieldChars;
if (maybeField)
fieldChars = StringToNewUTF8CharsZ(cx_, *maybeField);
else
fieldChars = DuplicateString("");
if (!fieldChars)
return false;
// Declare which function is exported which gives us an index into the
// module FuncExportVector.
if (!mg_.addFuncExport(Move(fieldChars), func.index()))
return false;
// The exported function might have already been exported in which case
// the index will refer into the range of AsmJSExports.
return asmJSMetadata_->asmJSExports.emplaceBack(func.index(),
func.srcBegin() - asmJSMetadata_->srcStart,
func.srcEnd() - asmJSMetadata_->srcStart);
}
bool addFunction(PropertyName* name, uint32_t firstUse, Sig&& sig, Func** func) {
uint32_t sigIndex;
if (!declareSig(Move(sig), &sigIndex))
return false;
uint32_t funcIndex = AsmJSFirstDefFuncIndex + numFunctions();
if (funcIndex >= MaxFuncs)
return failCurrentOffset("too many functions");
mg_.initFuncSig(funcIndex, sigIndex);
Global* global = validationLifo_.new_<Global>(Global::Function);
if (!global)
return false;
global->u.funcIndex_ = funcIndex;
if (!globalMap_.putNew(name, global))
return false;
*func = validationLifo_.new_<Func>(name, firstUse, funcIndex);
return *func && functions_.append(*func);
}
bool declareFuncPtrTable(Sig&& sig, PropertyName* name, uint32_t firstUse, uint32_t mask,
uint32_t* index)
{
if (mask > MaxTableElems)
return failCurrentOffset("function pointer table too big");
uint32_t sigIndex;
if (!newSig(Move(sig), &sigIndex))
return false;
if (!mg_.initSigTableLength(sigIndex, mask + 1))
return false;
Global* global = validationLifo_.new_<Global>(Global::FuncPtrTable);
if (!global)
return false;
global->u.funcPtrTableIndex_ = *index = funcPtrTables_.length();
if (!globalMap_.putNew(name, global))
return false;
FuncPtrTable* t = validationLifo_.new_<FuncPtrTable>(sigIndex, name, firstUse, mask);
return t && funcPtrTables_.append(t);
}
bool defineFuncPtrTable(uint32_t funcPtrTableIndex, Uint32Vector&& elems) {
FuncPtrTable& table = *funcPtrTables_[funcPtrTableIndex];
if (table.defined())
return false;
table.define();
return mg_.initSigTableElems(table.sigIndex(), Move(elems));
}
bool declareImport(PropertyName* name, Sig&& sig, unsigned ffiIndex, uint32_t* funcIndex) {
ImportMap::AddPtr p = importMap_.lookupForAdd(NamedSig::Lookup(name, sig));
if (p) {
*funcIndex = p->value();
return true;
}
*funcIndex = asmJSMetadata_->asmJSImports.length();
if (*funcIndex > AsmJSMaxImports)
return failCurrentOffset("too many imports");
if (!asmJSMetadata_->asmJSImports.emplaceBack(ffiIndex))
return false;
uint32_t sigIndex;
if (!declareSig(Move(sig), &sigIndex))
return false;
if (!mg_.initImport(*funcIndex, sigIndex))
return false;
return importMap_.add(p, NamedSig(name, mg_.sig(sigIndex)), *funcIndex);
}
bool tryConstantAccess(uint64_t start, uint64_t width) {
MOZ_ASSERT(UINT64_MAX - start > width);
uint64_t len = start + width;
if (len > uint64_t(INT32_MAX) + 1)
return false;
len = RoundUpToNextValidAsmJSHeapLength(len);
if (len > mg_.minMemoryLength())
mg_.bumpMinMemoryLength(len);
return true;
}
// Error handling.
bool hasAlreadyFailed() const {
return !!errorString_;
}
bool failOffset(uint32_t offset, const char* str) {
MOZ_ASSERT(!hasAlreadyFailed());
MOZ_ASSERT(errorOffset_ == UINT32_MAX);
MOZ_ASSERT(str);
errorOffset_ = offset;
errorString_ = DuplicateString(str);
return false;
}
bool failCurrentOffset(const char* str) {
return failOffset(tokenStream().currentToken().pos.begin, str);
}
bool fail(ParseNode* pn, const char* str) {
return failOffset(pn->pn_pos.begin, str);
}
bool failfVAOffset(uint32_t offset, const char* fmt, va_list ap) {
MOZ_ASSERT(!hasAlreadyFailed());
MOZ_ASSERT(errorOffset_ == UINT32_MAX);
MOZ_ASSERT(fmt);
errorOffset_ = offset;
errorString_.reset(JS_vsmprintf(fmt, ap));
return false;
}
bool failfOffset(uint32_t offset, const char* fmt, ...) MOZ_FORMAT_PRINTF(3, 4) {
va_list ap;
va_start(ap, fmt);
failfVAOffset(offset, fmt, ap);
va_end(ap);
return false;
}
bool failf(ParseNode* pn, const char* fmt, ...) MOZ_FORMAT_PRINTF(3, 4) {
va_list ap;
va_start(ap, fmt);
failfVAOffset(pn->pn_pos.begin, fmt, ap);
va_end(ap);
return false;
}
bool failNameOffset(uint32_t offset, const char* fmt, PropertyName* name) {
// This function is invoked without the caller properly rooting its locals.
gc::AutoSuppressGC suppress(cx_);
JSAutoByteString bytes;
if (AtomToPrintableString(cx_, name, &bytes))
failfOffset(offset, fmt, bytes.ptr());
return false;
}
bool failName(ParseNode* pn, const char* fmt, PropertyName* name) {
return failNameOffset(pn->pn_pos.begin, fmt, name);
}
bool failOverRecursed() {
errorOverRecursed_ = true;
return false;
}
unsigned numArrayViews() const {
return arrayViews_.length();
}
const ArrayView& arrayView(unsigned i) const {
return arrayViews_[i];
}
unsigned numFunctions() const {
return functions_.length();
}
Func& function(unsigned i) const {
return *functions_[i];
}
unsigned numFuncPtrTables() const {
return funcPtrTables_.length();
}
FuncPtrTable& funcPtrTable(unsigned i) const {
return *funcPtrTables_[i];
}
const Global* lookupGlobal(PropertyName* name) const {
if (GlobalMap::Ptr p = globalMap_.lookup(name))
return p->value();
return nullptr;
}
Func* lookupFunction(PropertyName* name) {
if (GlobalMap::Ptr p = globalMap_.lookup(name)) {
Global* value = p->value();
if (value->which() == Global::Function) {
MOZ_ASSERT(value->funcIndex() >= AsmJSFirstDefFuncIndex);
return functions_[value->funcIndex() - AsmJSFirstDefFuncIndex];
}
}
return nullptr;
}
bool lookupStandardLibraryMathName(PropertyName* name, MathBuiltin* mathBuiltin) const {
if (MathNameMap::Ptr p = standardLibraryMathNames_.lookup(name)) {
*mathBuiltin = p->value();
return true;
}
return false;
}
bool lookupStandardLibraryAtomicsName(PropertyName* name, AsmJSAtomicsBuiltinFunction* atomicsBuiltin) const {
if (AtomicsNameMap::Ptr p = standardLibraryAtomicsNames_.lookup(name)) {
*atomicsBuiltin = p->value();
return true;
}
return false;
}
bool lookupStandardSimdOpName(PropertyName* name, SimdOperation* op) const {
if (SimdOperationNameMap::Ptr p = standardLibrarySimdOpNames_.lookup(name)) {
*op = p->value();
return true;
}
return false;
}
bool startFunctionBodies() {
return mg_.startFuncDefs();
}
bool finishFunctionBodies() {
return mg_.finishFuncDefs();
}
SharedModule finish() {
if (!arrayViews_.empty())
mg_.initMemoryUsage(atomicsPresent_ ? MemoryUsage::Shared : MemoryUsage::Unshared);
asmJSMetadata_->usesSimd = simdPresent_;
MOZ_ASSERT(asmJSMetadata_->asmJSFuncNames.empty());
for (const Func* func : functions_) {
CacheableChars funcName = StringToNewUTF8CharsZ(cx_, *func->name());
if (!funcName || !asmJSMetadata_->asmJSFuncNames.emplaceBack(Move(funcName)))
return nullptr;
}
uint32_t endBeforeCurly = tokenStream().currentToken().pos.end;
asmJSMetadata_->srcLength = endBeforeCurly - asmJSMetadata_->srcStart;
TokenPos pos;
JS_ALWAYS_TRUE(tokenStream().peekTokenPos(&pos, TokenStream::Operand));
uint32_t endAfterCurly = pos.end;
asmJSMetadata_->srcLengthWithRightBrace = endAfterCurly - asmJSMetadata_->srcStart;
// asm.js does not have any wasm bytecode to save; view-source is
// provided through the ScriptSource.
SharedBytes bytes = js_new<ShareableBytes>();
if (!bytes)
return nullptr;
return mg_.finish(*bytes);
}
};
/*****************************************************************************/
// Numeric literal utilities
static bool
IsNumericNonFloatLiteral(ParseNode* pn)
{
// Note: '-' is never rolled into the number; numbers are always positive
// and negations must be applied manually.
return pn->isKind(PNK_NUMBER) ||
(pn->isKind(PNK_NEG) && UnaryKid(pn)->isKind(PNK_NUMBER));
}
static bool
IsCallToGlobal(ModuleValidator& m, ParseNode* pn, const ModuleValidator::Global** global)
{
if (!pn->isKind(PNK_CALL))
return false;
ParseNode* callee = CallCallee(pn);
if (!callee->isKind(PNK_NAME))
return false;
*global = m.lookupGlobal(callee->name());
return !!*global;
}
static bool
IsCoercionCall(ModuleValidator& m, ParseNode* pn, Type* coerceTo, ParseNode** coercedExpr)
{
const ModuleValidator::Global* global;
if (!IsCallToGlobal(m, pn, &global))
return false;
if (CallArgListLength(pn) != 1)
return false;
if (coercedExpr)
*coercedExpr = CallArgList(pn);
if (global->isMathFunction() && global->mathBuiltinFunction() == AsmJSMathBuiltin_fround) {
*coerceTo = Type::Float;
return true;
}
if (global->isSimdOperation() && global->simdOperation() == SimdOperation::Fn_check) {
*coerceTo = global->simdOperationType();
return true;
}
return false;
}
static bool
IsFloatLiteral(ModuleValidator& m, ParseNode* pn)
{
ParseNode* coercedExpr;
Type coerceTo;
if (!IsCoercionCall(m, pn, &coerceTo, &coercedExpr))
return false;
// Don't fold into || to avoid clang/memcheck bug (bug 1077031).
if (!coerceTo.isFloat())
return false;
return IsNumericNonFloatLiteral(coercedExpr);
}
static bool
IsSimdTuple(ModuleValidator& m, ParseNode* pn, SimdType* type)
{
const ModuleValidator::Global* global;
if (!IsCallToGlobal(m, pn, &global))
return false;
if (!global->isSimdCtor())
return false;
if (CallArgListLength(pn) != GetSimdLanes(global->simdCtorType()))
return false;
*type = global->simdCtorType();
return true;
}
static bool
IsNumericLiteral(ModuleValidator& m, ParseNode* pn, bool* isSimd = nullptr);
static NumLit
ExtractNumericLiteral(ModuleValidator& m, ParseNode* pn);
static inline bool
IsLiteralInt(ModuleValidator& m, ParseNode* pn, uint32_t* u32);
static bool
IsSimdLiteral(ModuleValidator& m, ParseNode* pn)
{
SimdType type;
if (!IsSimdTuple(m, pn, &type))
return false;
ParseNode* arg = CallArgList(pn);
unsigned length = GetSimdLanes(type);
for (unsigned i = 0; i < length; i++) {
if (!IsNumericLiteral(m, arg))
return false;
uint32_t _;
switch (type) {
case SimdType::Int8x16:
case SimdType::Int16x8:
case SimdType::Int32x4:
case SimdType::Uint8x16:
case SimdType::Uint16x8:
case SimdType::Uint32x4:
case SimdType::Bool8x16:
case SimdType::Bool16x8:
case SimdType::Bool32x4:
if (!IsLiteralInt(m, arg, &_))
return false;
break;
case SimdType::Float32x4:
if (!IsNumericNonFloatLiteral(arg))
return false;
break;
default:
MOZ_CRASH("unhandled simd type");
}
arg = NextNode(arg);
}
MOZ_ASSERT(arg == nullptr);
return true;
}
static bool
IsNumericLiteral(ModuleValidator& m, ParseNode* pn, bool* isSimd)
{
if (IsNumericNonFloatLiteral(pn) || IsFloatLiteral(m, pn))
return true;
if (IsSimdLiteral(m, pn)) {
if (isSimd)
*isSimd = true;
return true;
}
return false;
}
// The JS grammar treats -42 as -(42) (i.e., with separate grammar
// productions) for the unary - and literal 42). However, the asm.js spec
// recognizes -42 (modulo parens, so -(42) and -((42))) as a single literal
// so fold the two potential parse nodes into a single double value.
static double
ExtractNumericNonFloatValue(ParseNode* pn, ParseNode** out = nullptr)
{
MOZ_ASSERT(IsNumericNonFloatLiteral(pn));
if (pn->isKind(PNK_NEG)) {
pn = UnaryKid(pn);
if (out)
*out = pn;
return -NumberNodeValue(pn);
}
return NumberNodeValue(pn);
}
static NumLit
ExtractSimdValue(ModuleValidator& m, ParseNode* pn)
{
MOZ_ASSERT(IsSimdLiteral(m, pn));
SimdType type = SimdType::Count;
JS_ALWAYS_TRUE(IsSimdTuple(m, pn, &type));
MOZ_ASSERT(CallArgListLength(pn) == GetSimdLanes(type));
ParseNode* arg = CallArgList(pn);
switch (type) {
case SimdType::Int8x16:
case SimdType::Uint8x16: {
MOZ_ASSERT(GetSimdLanes(type) == 16);
int8_t val[16];
for (size_t i = 0; i < 16; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = int8_t(u32);
}
MOZ_ASSERT(arg == nullptr);
NumLit::Which w = type == SimdType::Uint8x16 ? NumLit::Uint8x16 : NumLit::Int8x16;
return NumLit(w, SimdConstant::CreateX16(val));
}
case SimdType::Int16x8:
case SimdType::Uint16x8: {
MOZ_ASSERT(GetSimdLanes(type) == 8);
int16_t val[8];
for (size_t i = 0; i < 8; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = int16_t(u32);
}
MOZ_ASSERT(arg == nullptr);
NumLit::Which w = type == SimdType::Uint16x8 ? NumLit::Uint16x8 : NumLit::Int16x8;
return NumLit(w, SimdConstant::CreateX8(val));
}
case SimdType::Int32x4:
case SimdType::Uint32x4: {
MOZ_ASSERT(GetSimdLanes(type) == 4);
int32_t val[4];
for (size_t i = 0; i < 4; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = int32_t(u32);
}
MOZ_ASSERT(arg == nullptr);
NumLit::Which w = type == SimdType::Uint32x4 ? NumLit::Uint32x4 : NumLit::Int32x4;
return NumLit(w, SimdConstant::CreateX4(val));
}
case SimdType::Float32x4: {
MOZ_ASSERT(GetSimdLanes(type) == 4);
float val[4];
for (size_t i = 0; i < 4; i++, arg = NextNode(arg))
val[i] = float(ExtractNumericNonFloatValue(arg));
MOZ_ASSERT(arg == nullptr);
return NumLit(NumLit::Float32x4, SimdConstant::CreateX4(val));
}
case SimdType::Bool8x16: {
MOZ_ASSERT(GetSimdLanes(type) == 16);
int8_t val[16];
for (size_t i = 0; i < 16; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = u32 ? -1 : 0;
}
MOZ_ASSERT(arg == nullptr);
return NumLit(NumLit::Bool8x16, SimdConstant::CreateX16(val));
}
case SimdType::Bool16x8: {
MOZ_ASSERT(GetSimdLanes(type) == 8);
int16_t val[8];
for (size_t i = 0; i < 8; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = u32 ? -1 : 0;
}
MOZ_ASSERT(arg == nullptr);
return NumLit(NumLit::Bool16x8, SimdConstant::CreateX8(val));
}
case SimdType::Bool32x4: {
MOZ_ASSERT(GetSimdLanes(type) == 4);
int32_t val[4];
for (size_t i = 0; i < 4; i++, arg = NextNode(arg)) {
uint32_t u32;
JS_ALWAYS_TRUE(IsLiteralInt(m, arg, &u32));
val[i] = u32 ? -1 : 0;
}
MOZ_ASSERT(arg == nullptr);
return NumLit(NumLit::Bool32x4, SimdConstant::CreateX4(val));
}
default:
break;
}
MOZ_CRASH("Unexpected SIMD type.");
}
static NumLit
ExtractNumericLiteral(ModuleValidator& m, ParseNode* pn)
{
MOZ_ASSERT(IsNumericLiteral(m, pn));
if (pn->isKind(PNK_CALL)) {
// Float literals are explicitly coerced and thus the coerced literal may be
// any valid (non-float) numeric literal.
if (CallArgListLength(pn) == 1) {
pn = CallArgList(pn);
double d = ExtractNumericNonFloatValue(pn);
return NumLit(NumLit::Float, DoubleValue(d));
}
return ExtractSimdValue(m, pn);
}
double d = ExtractNumericNonFloatValue(pn, &pn);
// The asm.js spec syntactically distinguishes any literal containing a
// decimal point or the literal -0 as having double type.
if (NumberNodeHasFrac(pn) || IsNegativeZero(d))
return NumLit(NumLit::Double, DoubleValue(d));
// The syntactic checks above rule out these double values.
MOZ_ASSERT(!IsNegativeZero(d));
MOZ_ASSERT(!IsNaN(d));
// Although doubles can only *precisely* represent 53-bit integers, they
// can *imprecisely* represent integers much bigger than an int64_t.
// Furthermore, d may be inf or -inf. In both cases, casting to an int64_t
// is undefined, so test against the integer bounds using doubles.
if (d < double(INT32_MIN) || d > double(UINT32_MAX))
return NumLit(NumLit::OutOfRangeInt, UndefinedValue());
// With the above syntactic and range limitations, d is definitely an
// integer in the range [INT32_MIN, UINT32_MAX] range.
int64_t i64 = int64_t(d);
if (i64 >= 0) {
if (i64 <= INT32_MAX)
return NumLit(NumLit::Fixnum, Int32Value(i64));
MOZ_ASSERT(i64 <= UINT32_MAX);
return NumLit(NumLit::BigUnsigned, Int32Value(uint32_t(i64)));
}
MOZ_ASSERT(i64 >= INT32_MIN);
return NumLit(NumLit::NegativeInt, Int32Value(i64));
}
static inline bool
IsLiteralInt(const NumLit& lit, uint32_t* u32)
{
switch (lit.which()) {
case NumLit::Fixnum:
case NumLit::BigUnsigned:
case NumLit::NegativeInt:
*u32 = lit.toUint32();
return true;
case NumLit::Double:
case NumLit::Float:
case NumLit::OutOfRangeInt:
case NumLit::Int8x16:
case NumLit::Uint8x16:
case NumLit::Int16x8:
case NumLit::Uint16x8:
case NumLit::Int32x4:
case NumLit::Uint32x4:
case NumLit::Float32x4:
case NumLit::Bool8x16:
case NumLit::Bool16x8:
case NumLit::Bool32x4:
return false;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Bad literal type");
}
static inline bool
IsLiteralInt(ModuleValidator& m, ParseNode* pn, uint32_t* u32)
{
return IsNumericLiteral(m, pn) &&
IsLiteralInt(ExtractNumericLiteral(m, pn), u32);
}
/*****************************************************************************/
namespace {
#define CASE(TYPE, OP) case SimdOperation::Fn_##OP: return Op::TYPE##OP;
#define I8x16CASE(OP) CASE(I8x16, OP)
#define I16x8CASE(OP) CASE(I16x8, OP)
#define I32x4CASE(OP) CASE(I32x4, OP)
#define F32x4CASE(OP) CASE(F32x4, OP)
#define B8x16CASE(OP) CASE(B8x16, OP)
#define B16x8CASE(OP) CASE(B16x8, OP)
#define B32x4CASE(OP) CASE(B32x4, OP)
#define ENUMERATE(TYPE, FOR_ALL, DO) \
switch(op) { \
case SimdOperation::Constructor: return Op::TYPE##Constructor; \
FOR_ALL(DO) \
default: break; \
}
static inline Op
SimdToOp(SimdType type, SimdOperation op)
{
switch (type) {
case SimdType::Uint8x16:
// Handle the special unsigned opcodes, then fall through to Int8x16.
switch (op) {
case SimdOperation::Fn_addSaturate: return Op::I8x16addSaturateU;
case SimdOperation::Fn_subSaturate: return Op::I8x16subSaturateU;
case SimdOperation::Fn_extractLane: return Op::I8x16extractLaneU;
case SimdOperation::Fn_shiftRightByScalar: return Op::I8x16shiftRightByScalarU;
case SimdOperation::Fn_lessThan: return Op::I8x16lessThanU;
case SimdOperation::Fn_lessThanOrEqual: return Op::I8x16lessThanOrEqualU;
case SimdOperation::Fn_greaterThan: return Op::I8x16greaterThanU;
case SimdOperation::Fn_greaterThanOrEqual: return Op::I8x16greaterThanOrEqualU;
case SimdOperation::Fn_fromInt8x16Bits: return Op::Limit;
default: break;
}
MOZ_FALLTHROUGH;
case SimdType::Int8x16:
// Bitcasts Uint8x16 <--> Int8x16 become noops.
switch (op) {
case SimdOperation::Fn_fromUint8x16Bits: return Op::Limit;
case SimdOperation::Fn_fromUint16x8Bits: return Op::I8x16fromInt16x8Bits;
case SimdOperation::Fn_fromUint32x4Bits: return Op::I8x16fromInt32x4Bits;
default: break;
}
ENUMERATE(I8x16, FORALL_INT8X16_ASMJS_OP, I8x16CASE)
break;
case SimdType::Uint16x8:
// Handle the special unsigned opcodes, then fall through to Int16x8.
switch(op) {
case SimdOperation::Fn_addSaturate: return Op::I16x8addSaturateU;
case SimdOperation::Fn_subSaturate: return Op::I16x8subSaturateU;
case SimdOperation::Fn_extractLane: return Op::I16x8extractLaneU;
case SimdOperation::Fn_shiftRightByScalar: return Op::I16x8shiftRightByScalarU;
case SimdOperation::Fn_lessThan: return Op::I16x8lessThanU;
case SimdOperation::Fn_lessThanOrEqual: return Op::I16x8lessThanOrEqualU;
case SimdOperation::Fn_greaterThan: return Op::I16x8greaterThanU;
case SimdOperation::Fn_greaterThanOrEqual: return Op::I16x8greaterThanOrEqualU;
case SimdOperation::Fn_fromInt16x8Bits: return Op::Limit;
default: break;
}
MOZ_FALLTHROUGH;
case SimdType::Int16x8:
// Bitcasts Uint16x8 <--> Int16x8 become noops.
switch (op) {
case SimdOperation::Fn_fromUint8x16Bits: return Op::I16x8fromInt8x16Bits;
case SimdOperation::Fn_fromUint16x8Bits: return Op::Limit;
case SimdOperation::Fn_fromUint32x4Bits: return Op::I16x8fromInt32x4Bits;
default: break;
}
ENUMERATE(I16x8, FORALL_INT16X8_ASMJS_OP, I16x8CASE)
break;
case SimdType::Uint32x4:
// Handle the special unsigned opcodes, then fall through to Int32x4.
switch(op) {
case SimdOperation::Fn_shiftRightByScalar: return Op::I32x4shiftRightByScalarU;
case SimdOperation::Fn_lessThan: return Op::I32x4lessThanU;
case SimdOperation::Fn_lessThanOrEqual: return Op::I32x4lessThanOrEqualU;
case SimdOperation::Fn_greaterThan: return Op::I32x4greaterThanU;
case SimdOperation::Fn_greaterThanOrEqual: return Op::I32x4greaterThanOrEqualU;
case SimdOperation::Fn_fromFloat32x4: return Op::I32x4fromFloat32x4U;
case SimdOperation::Fn_fromInt32x4Bits: return Op::Limit;
default: break;
}
MOZ_FALLTHROUGH;
case SimdType::Int32x4:
// Bitcasts Uint32x4 <--> Int32x4 become noops.
switch (op) {
case SimdOperation::Fn_fromUint8x16Bits: return Op::I32x4fromInt8x16Bits;
case SimdOperation::Fn_fromUint16x8Bits: return Op::I32x4fromInt16x8Bits;
case SimdOperation::Fn_fromUint32x4Bits: return Op::Limit;
default: break;
}
ENUMERATE(I32x4, FORALL_INT32X4_ASMJS_OP, I32x4CASE)
break;
case SimdType::Float32x4:
switch (op) {
case SimdOperation::Fn_fromUint8x16Bits: return Op::F32x4fromInt8x16Bits;
case SimdOperation::Fn_fromUint16x8Bits: return Op::F32x4fromInt16x8Bits;
case SimdOperation::Fn_fromUint32x4Bits: return Op::F32x4fromInt32x4Bits;
default: break;
}
ENUMERATE(F32x4, FORALL_FLOAT32X4_ASMJS_OP, F32x4CASE)
break;
case SimdType::Bool8x16:
ENUMERATE(B8x16, FORALL_BOOL_SIMD_OP, B8x16CASE)
break;
case SimdType::Bool16x8:
ENUMERATE(B16x8, FORALL_BOOL_SIMD_OP, B16x8CASE)
break;
case SimdType::Bool32x4:
ENUMERATE(B32x4, FORALL_BOOL_SIMD_OP, B32x4CASE)
break;
default: break;
}
MOZ_CRASH("unexpected SIMD (type, operator) combination");
}
#undef CASE
#undef I8x16CASE
#undef I16x8CASE
#undef I32x4CASE
#undef F32x4CASE
#undef B8x16CASE
#undef B16x8CASE
#undef B32x4CASE
#undef ENUMERATE
typedef Vector<PropertyName*, 4, SystemAllocPolicy> NameVector;
// Encapsulates the building of an asm bytecode function from an asm.js function
// source code, packing the asm.js code into the asm bytecode form that can
// be decoded and compiled with a FunctionCompiler.
class MOZ_STACK_CLASS FunctionValidator
{
public:
struct Local
{
Type type;
unsigned slot;
Local(Type t, unsigned slot) : type(t), slot(slot) {
MOZ_ASSERT(type.isCanonicalValType());
}
};
private:
typedef HashMap<PropertyName*, Local> LocalMap;
typedef HashMap<PropertyName*, uint32_t> LabelMap;
ModuleValidator& m_;
ParseNode* fn_;
FunctionGenerator fg_;
Maybe<Encoder> encoder_;
LocalMap locals_;
// Labels
LabelMap breakLabels_;
LabelMap continueLabels_;
Uint32Vector breakableStack_;
Uint32Vector continuableStack_;
uint32_t blockDepth_;
bool hasAlreadyReturned_;
ExprType ret_;
public:
FunctionValidator(ModuleValidator& m, ParseNode* fn)
: m_(m),
fn_(fn),
locals_(m.cx()),
breakLabels_(m.cx()),
continueLabels_(m.cx()),
blockDepth_(0),
hasAlreadyReturned_(false),
ret_(ExprType::Limit)
{}
ModuleValidator& m() const { return m_; }
ExclusiveContext* cx() const { return m_.cx(); }
ParseNode* fn() const { return fn_; }
bool init(PropertyName* name, unsigned line) {
if (!locals_.init() || !breakLabels_.init() || !continueLabels_.init())
return false;
if (!m_.mg().startFuncDef(line, &fg_))
return false;
encoder_.emplace(fg_.bytes());
return true;
}
bool finish(uint32_t funcIndex) {
MOZ_ASSERT(!blockDepth_);
MOZ_ASSERT(breakableStack_.empty());
MOZ_ASSERT(continuableStack_.empty());
MOZ_ASSERT(breakLabels_.empty());
MOZ_ASSERT(continueLabels_.empty());
for (auto iter = locals_.all(); !iter.empty(); iter.popFront()) {
if (iter.front().value().type.isSimd()) {
setUsesSimd();
break;
}
}
return m_.mg().finishFuncDef(funcIndex, &fg_);
}
bool fail(ParseNode* pn, const char* str) {
return m_.fail(pn, str);
}
bool failf(ParseNode* pn, const char* fmt, ...) MOZ_FORMAT_PRINTF(3, 4) {
va_list ap;
va_start(ap, fmt);
m_.failfVAOffset(pn->pn_pos.begin, fmt, ap);
va_end(ap);
return false;
}
bool failName(ParseNode* pn, const char* fmt, PropertyName* name) {
return m_.failName(pn, fmt, name);
}
/***************************************************** Attributes */
void setUsesSimd() {
fg_.setUsesSimd();
}
void setUsesAtomics() {
fg_.setUsesAtomics();
}
/***************************************************** Local scope setup */
bool addLocal(ParseNode* pn, PropertyName* name, Type type) {
LocalMap::AddPtr p = locals_.lookupForAdd(name);
if (p)
return failName(pn, "duplicate local name '%s' not allowed", name);
return locals_.add(p, name, Local(type, locals_.count()));
}
/****************************** For consistency of returns in a function */
bool hasAlreadyReturned() const {
return hasAlreadyReturned_;
}
ExprType returnedType() const {
return ret_;
}
void setReturnedType(ExprType ret) {
ret_ = ret;
hasAlreadyReturned_ = true;
}
/**************************************************************** Labels */
private:
bool writeBr(uint32_t absolute, Op op = Op::Br) {
MOZ_ASSERT(op == Op::Br || op == Op::BrIf);
MOZ_ASSERT(absolute < blockDepth_);
return encoder().writeOp(op) &&
encoder().writeVarU32(blockDepth_ - 1 - absolute);
}
void removeLabel(PropertyName* label, LabelMap* map) {
LabelMap::Ptr p = map->lookup(label);
MOZ_ASSERT(p);
map->remove(p);
}
public:
bool pushBreakableBlock() {
return encoder().writeOp(Op::Block) &&
encoder().writeFixedU8(uint8_t(ExprType::Void)) &&
breakableStack_.append(blockDepth_++);
}
bool popBreakableBlock() {
JS_ALWAYS_TRUE(breakableStack_.popCopy() == --blockDepth_);
return encoder().writeOp(Op::End);
}
bool pushUnbreakableBlock(const NameVector* labels = nullptr) {
if (labels) {
for (PropertyName* label : *labels) {
if (!breakLabels_.putNew(label, blockDepth_))
return false;
}
}
blockDepth_++;
return encoder().writeOp(Op::Block) &&
encoder().writeFixedU8(uint8_t(ExprType::Void));
}
bool popUnbreakableBlock(const NameVector* labels = nullptr) {
if (labels) {
for (PropertyName* label : *labels)
removeLabel(label, &breakLabels_);
}
--blockDepth_;
return encoder().writeOp(Op::End);
}
bool pushContinuableBlock() {
return encoder().writeOp(Op::Block) &&
encoder().writeFixedU8(uint8_t(ExprType::Void)) &&
continuableStack_.append(blockDepth_++);
}
bool popContinuableBlock() {
JS_ALWAYS_TRUE(continuableStack_.popCopy() == --blockDepth_);
return encoder().writeOp(Op::End);
}
bool pushLoop() {
return encoder().writeOp(Op::Block) &&
encoder().writeFixedU8(uint8_t(ExprType::Void)) &&
encoder().writeOp(Op::Loop) &&
encoder().writeFixedU8(uint8_t(ExprType::Void)) &&
breakableStack_.append(blockDepth_++) &&
continuableStack_.append(blockDepth_++);
}
bool popLoop() {
JS_ALWAYS_TRUE(continuableStack_.popCopy() == --blockDepth_);
JS_ALWAYS_TRUE(breakableStack_.popCopy() == --blockDepth_);
return encoder().writeOp(Op::End) &&
encoder().writeOp(Op::End);
}
bool pushIf(size_t* typeAt) {
++blockDepth_;
return encoder().writeOp(Op::If) &&
encoder().writePatchableFixedU7(typeAt);
}
bool switchToElse() {
MOZ_ASSERT(blockDepth_ > 0);
return encoder().writeOp(Op::Else);
}
void setIfType(size_t typeAt, ExprType type) {
encoder().patchFixedU7(typeAt, uint8_t(type));
}
bool popIf() {
MOZ_ASSERT(blockDepth_ > 0);
--blockDepth_;
return encoder().writeOp(Op::End);
}
bool popIf(size_t typeAt, ExprType type) {
MOZ_ASSERT(blockDepth_ > 0);
--blockDepth_;
if (!encoder().writeOp(Op::End))
return false;
setIfType(typeAt, type);
return true;
}
bool writeBreakIf() {
return writeBr(breakableStack_.back(), Op::BrIf);
}
bool writeContinueIf() {
return writeBr(continuableStack_.back(), Op::BrIf);
}
bool writeUnlabeledBreakOrContinue(bool isBreak) {
return writeBr(isBreak? breakableStack_.back() : continuableStack_.back());
}
bool writeContinue() {
return writeBr(continuableStack_.back());
}
bool addLabels(const NameVector& labels, uint32_t relativeBreakDepth,
uint32_t relativeContinueDepth)
{
for (PropertyName* label : labels) {
if (!breakLabels_.putNew(label, blockDepth_ + relativeBreakDepth))
return false;
if (!continueLabels_.putNew(label, blockDepth_ + relativeContinueDepth))
return false;
}
return true;
}
void removeLabels(const NameVector& labels) {
for (PropertyName* label : labels) {
removeLabel(label, &breakLabels_);
removeLabel(label, &continueLabels_);
}
}
bool writeLabeledBreakOrContinue(PropertyName* label, bool isBreak) {
LabelMap& map = isBreak ? breakLabels_ : continueLabels_;
if (LabelMap::Ptr p = map.lookup(label))
return writeBr(p->value());
MOZ_CRASH("nonexistent label");
}
/*************************************************** Read-only interface */
const Local* lookupLocal(PropertyName* name) const {
if (auto p = locals_.lookup(name))
return &p->value();
return nullptr;
}
const ModuleValidator::Global* lookupGlobal(PropertyName* name) const {
if (locals_.has(name))
return nullptr;
return m_.lookupGlobal(name);
}
size_t numLocals() const { return locals_.count(); }
/**************************************************** Encoding interface */
Encoder& encoder() { return *encoder_; }
MOZ_MUST_USE bool writeInt32Lit(int32_t i32) {
return encoder().writeOp(Op::I32Const) &&
encoder().writeVarS32(i32);
}
MOZ_MUST_USE bool writeConstExpr(const NumLit& lit) {
switch (lit.which()) {
case NumLit::Fixnum:
case NumLit::NegativeInt:
case NumLit::BigUnsigned:
return writeInt32Lit(lit.toInt32());
case NumLit::Float:
return encoder().writeOp(Op::F32Const) &&
encoder().writeFixedF32(lit.toFloat());
case NumLit::Double:
return encoder().writeOp(Op::F64Const) &&
encoder().writeFixedF64(lit.toDouble());
case NumLit::Int8x16:
case NumLit::Uint8x16:
return encoder().writeOp(Op::I8x16Const) &&
encoder().writeFixedI8x16(lit.simdValue().asInt8x16());
case NumLit::Int16x8:
case NumLit::Uint16x8:
return encoder().writeOp(Op::I16x8Const) &&
encoder().writeFixedI16x8(lit.simdValue().asInt16x8());
case NumLit::Int32x4:
case NumLit::Uint32x4:
return encoder().writeOp(Op::I32x4Const) &&
encoder().writeFixedI32x4(lit.simdValue().asInt32x4());
case NumLit::Float32x4:
return encoder().writeOp(Op::F32x4Const) &&
encoder().writeFixedF32x4(lit.simdValue().asFloat32x4());
case NumLit::Bool8x16:
// Boolean vectors use the Int8x16 memory representation.
return encoder().writeOp(Op::B8x16Const) &&
encoder().writeFixedI8x16(lit.simdValue().asInt8x16());
case NumLit::Bool16x8:
// Boolean vectors use the Int16x8 memory representation.
return encoder().writeOp(Op::B16x8Const) &&
encoder().writeFixedI16x8(lit.simdValue().asInt16x8());
case NumLit::Bool32x4:
// Boolean vectors use the Int32x4 memory representation.
return encoder().writeOp(Op::B32x4Const) &&
encoder().writeFixedI32x4(lit.simdValue().asInt32x4());
case NumLit::OutOfRangeInt:
break;
}
MOZ_CRASH("unexpected literal type");
}
MOZ_MUST_USE bool writeCall(ParseNode* pn, Op op) {
return encoder().writeOp(op) &&
fg_.addCallSiteLineNum(m().tokenStream().srcCoords.lineNum(pn->pn_pos.begin));
}
MOZ_MUST_USE bool prepareCall(ParseNode* pn) {
return fg_.addCallSiteLineNum(m().tokenStream().srcCoords.lineNum(pn->pn_pos.begin));
}
MOZ_MUST_USE bool writeSimdOp(SimdType simdType, SimdOperation simdOp) {
Op op = SimdToOp(simdType, simdOp);
if (op == Op::Limit)
return true;
return encoder().writeOp(op);
}
};
} /* anonymous namespace */
/*****************************************************************************/
// asm.js type-checking and code-generation algorithm
static bool
CheckIdentifier(ModuleValidator& m, ParseNode* usepn, PropertyName* name)
{
if (name == m.cx()->names().arguments || name == m.cx()->names().eval)
return m.failName(usepn, "'%s' is not an allowed identifier", name);
return true;
}
static bool
CheckModuleLevelName(ModuleValidator& m, ParseNode* usepn, PropertyName* name)
{
if (!CheckIdentifier(m, usepn, name))
return false;
if (name == m.moduleFunctionName() ||
name == m.globalArgumentName() ||
name == m.importArgumentName() ||
name == m.bufferArgumentName() ||
m.lookupGlobal(name))
{
return m.failName(usepn, "duplicate name '%s' not allowed", name);
}
return true;
}
static bool
CheckFunctionHead(ModuleValidator& m, ParseNode* fn)
{
JSFunction* fun = FunctionObject(fn);
if (fn->pn_funbox->hasRest())
return m.fail(fn, "rest args not allowed");
if (fun->isExprBody())
return m.fail(fn, "expression closures not allowed");
if (fn->pn_funbox->hasDestructuringArgs)
return m.fail(fn, "destructuring args not allowed");
return true;
}
static bool
CheckArgument(ModuleValidator& m, ParseNode* arg, PropertyName** name)
{
*name = nullptr;
if (!arg->isKind(PNK_NAME))
return m.fail(arg, "argument is not a plain name");
if (!CheckIdentifier(m, arg, arg->name()))
return false;
*name = arg->name();
return true;
}
static bool
CheckModuleArgument(ModuleValidator& m, ParseNode* arg, PropertyName** name)
{
if (!CheckArgument(m, arg, name))
return false;
if (!CheckModuleLevelName(m, arg, *name))
return false;
return true;
}
static bool
CheckModuleArguments(ModuleValidator& m, ParseNode* fn)
{
unsigned numFormals;
ParseNode* arg1 = FunctionFormalParametersList(fn, &numFormals);
ParseNode* arg2 = arg1 ? NextNode(arg1) : nullptr;
ParseNode* arg3 = arg2 ? NextNode(arg2) : nullptr;
if (numFormals > 3)
return m.fail(fn, "asm.js modules takes at most 3 argument");
PropertyName* arg1Name = nullptr;
if (arg1 && !CheckModuleArgument(m, arg1, &arg1Name))
return false;
if (!m.initGlobalArgumentName(arg1Name))
return false;
PropertyName* arg2Name = nullptr;
if (arg2 && !CheckModuleArgument(m, arg2, &arg2Name))
return false;
if (!m.initImportArgumentName(arg2Name))
return false;
PropertyName* arg3Name = nullptr;
if (arg3 && !CheckModuleArgument(m, arg3, &arg3Name))
return false;
if (!m.initBufferArgumentName(arg3Name))
return false;
return true;
}
static bool
CheckPrecedingStatements(ModuleValidator& m, ParseNode* stmtList)
{
MOZ_ASSERT(stmtList->isKind(PNK_STATEMENTLIST));
ParseNode* stmt = ListHead(stmtList);
for (unsigned i = 0, n = ListLength(stmtList); i < n; i++) {
if (!IsIgnoredDirective(m.cx(), stmt))
return m.fail(stmt, "invalid asm.js statement");
}
return true;
}
static bool
CheckGlobalVariableInitConstant(ModuleValidator& m, PropertyName* varName, ParseNode* initNode,
bool isConst)
{
NumLit lit = ExtractNumericLiteral(m, initNode);
if (!lit.valid())
return m.fail(initNode, "global initializer is out of representable integer range");
Type canonicalType = Type::canonicalize(Type::lit(lit));
if (!canonicalType.isGlobalVarType())
return m.fail(initNode, "global variable type not allowed");
return m.addGlobalVarInit(varName, lit, canonicalType, isConst);
}
static bool
CheckTypeAnnotation(ModuleValidator& m, ParseNode* coercionNode, Type* coerceTo,
ParseNode** coercedExpr = nullptr)
{
switch (coercionNode->getKind()) {
case PNK_BITOR: {
ParseNode* rhs = BitwiseRight(coercionNode);
uint32_t i;
if (!IsLiteralInt(m, rhs, &i) || i != 0)
return m.fail(rhs, "must use |0 for argument/return coercion");
*coerceTo = Type::Int;
if (coercedExpr)
*coercedExpr = BitwiseLeft(coercionNode);
return true;
}
case PNK_POS: {
*coerceTo = Type::Double;
if (coercedExpr)
*coercedExpr = UnaryKid(coercionNode);
return true;
}
case PNK_CALL: {
if (IsCoercionCall(m, coercionNode, coerceTo, coercedExpr))
return true;
break;
}
default:;
}
return m.fail(coercionNode, "must be of the form +x, x|0, fround(x), or a SIMD check(x)");
}
static bool
CheckGlobalVariableInitImport(ModuleValidator& m, PropertyName* varName, ParseNode* initNode,
bool isConst)
{
Type coerceTo;
ParseNode* coercedExpr;
if (!CheckTypeAnnotation(m, initNode, &coerceTo, &coercedExpr))
return false;
if (!coercedExpr->isKind(PNK_DOT))
return m.failName(coercedExpr, "invalid import expression for global '%s'", varName);
if (!coerceTo.isGlobalVarType())
return m.fail(initNode, "global variable type not allowed");
ParseNode* base = DotBase(coercedExpr);
PropertyName* field = DotMember(coercedExpr);
PropertyName* importName = m.importArgumentName();
if (!importName)
return m.fail(coercedExpr, "cannot import without an asm.js foreign parameter");
if (!IsUseOfName(base, importName))
return m.failName(coercedExpr, "base of import expression must be '%s'", importName);
return m.addGlobalVarImport(varName, field, coerceTo, isConst);
}
static bool
IsArrayViewCtorName(ModuleValidator& m, PropertyName* name, Scalar::Type* type)
{
JSAtomState& names = m.cx()->names();
if (name == names.Int8Array) {
*type = Scalar::Int8;
} else if (name == names.Uint8Array) {
*type = Scalar::Uint8;
} else if (name == names.Int16Array) {
*type = Scalar::Int16;
} else if (name == names.Uint16Array) {
*type = Scalar::Uint16;
} else if (name == names.Int32Array) {
*type = Scalar::Int32;
} else if (name == names.Uint32Array) {
*type = Scalar::Uint32;
} else if (name == names.Float32Array) {
*type = Scalar::Float32;
} else if (name == names.Float64Array) {
*type = Scalar::Float64;
} else {
return false;
}
return true;
}
static bool
CheckNewArrayViewArgs(ModuleValidator& m, ParseNode* ctorExpr, PropertyName* bufferName)
{
ParseNode* bufArg = NextNode(ctorExpr);
if (!bufArg || NextNode(bufArg) != nullptr)
return m.fail(ctorExpr, "array view constructor takes exactly one argument");
if (!IsUseOfName(bufArg, bufferName))
return m.failName(bufArg, "argument to array view constructor must be '%s'", bufferName);
return true;
}
static bool
CheckNewArrayView(ModuleValidator& m, PropertyName* varName, ParseNode* newExpr)
{
PropertyName* globalName = m.globalArgumentName();
if (!globalName)
return m.fail(newExpr, "cannot create array view without an asm.js global parameter");
PropertyName* bufferName = m.bufferArgumentName();
if (!bufferName)
return m.fail(newExpr, "cannot create array view without an asm.js heap parameter");
ParseNode* ctorExpr = ListHead(newExpr);
PropertyName* field;
Scalar::Type type;
if (ctorExpr->isKind(PNK_DOT)) {
ParseNode* base = DotBase(ctorExpr);
if (!IsUseOfName(base, globalName))
return m.failName(base, "expecting '%s.*Array", globalName);
field = DotMember(ctorExpr);
if (!IsArrayViewCtorName(m, field, &type))
return m.fail(ctorExpr, "could not match typed array name");
} else {
if (!ctorExpr->isKind(PNK_NAME))
return m.fail(ctorExpr, "expecting name of imported array view constructor");
PropertyName* globalName = ctorExpr->name();
const ModuleValidator::Global* global = m.lookupGlobal(globalName);
if (!global)
return m.failName(ctorExpr, "%s not found in module global scope", globalName);
if (global->which() != ModuleValidator::Global::ArrayViewCtor)
return m.failName(ctorExpr, "%s must be an imported array view constructor", globalName);
field = nullptr;
type = global->viewType();
}
if (!CheckNewArrayViewArgs(m, ctorExpr, bufferName))
return false;
return m.addArrayView(varName, type, field);
}
static bool
IsSimdValidOperationType(SimdType type, SimdOperation op)
{
#define CASE(op) case SimdOperation::Fn_##op:
switch(type) {
case SimdType::Int8x16:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_INT8X16_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Int16x8:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_INT16X8_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Int32x4:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_INT32X4_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Uint8x16:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromInt8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_INT8X16_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Uint16x8:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromInt16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_INT16X8_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Uint32x4:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromInt32x4Bits:
FORALL_INT32X4_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Float32x4:
switch (op) {
case SimdOperation::Constructor:
case SimdOperation::Fn_fromUint8x16Bits:
case SimdOperation::Fn_fromUint16x8Bits:
case SimdOperation::Fn_fromUint32x4Bits:
FORALL_FLOAT32X4_ASMJS_OP(CASE) return true;
default: return false;
}
break;
case SimdType::Bool8x16:
case SimdType::Bool16x8:
case SimdType::Bool32x4:
switch (op) {
case SimdOperation::Constructor:
FORALL_BOOL_SIMD_OP(CASE) return true;
default: return false;
}
break;
default:
// Unimplemented SIMD type.
return false;
}
#undef CASE
}
static bool
CheckGlobalMathImport(ModuleValidator& m, ParseNode* initNode, PropertyName* varName,
PropertyName* field)
{
// Math builtin, with the form glob.Math.[[builtin]]
ModuleValidator::MathBuiltin mathBuiltin;
if (!m.lookupStandardLibraryMathName(field, &mathBuiltin))
return m.failName(initNode, "'%s' is not a standard Math builtin", field);
switch (mathBuiltin.kind) {
case ModuleValidator::MathBuiltin::Function:
return m.addMathBuiltinFunction(varName, mathBuiltin.u.func, field);
case ModuleValidator::MathBuiltin::Constant:
return m.addMathBuiltinConstant(varName, mathBuiltin.u.cst, field);
default:
break;
}
MOZ_CRASH("unexpected or uninitialized math builtin type");
}
static bool
CheckGlobalAtomicsImport(ModuleValidator& m, ParseNode* initNode, PropertyName* varName,
PropertyName* field)
{
// Atomics builtin, with the form glob.Atomics.[[builtin]]
AsmJSAtomicsBuiltinFunction func;
if (!m.lookupStandardLibraryAtomicsName(field, &func))
return m.failName(initNode, "'%s' is not a standard Atomics builtin", field);
return m.addAtomicsBuiltinFunction(varName, func, field);
}
static bool
CheckGlobalSimdImport(ModuleValidator& m, ParseNode* initNode, PropertyName* varName,
PropertyName* field)
{
if (!m.supportsSimd())
return m.fail(initNode, "SIMD is not supported on this platform");
// SIMD constructor, with the form glob.SIMD.[[type]]
SimdType simdType;
if (!IsSimdTypeName(m.cx()->names(), field, &simdType))
return m.failName(initNode, "'%s' is not a standard SIMD type", field);
// IsSimdTypeName will return true for any SIMD type supported by the VM.
//
// Since we may not support all of those SIMD types in asm.js, use the
// asm.js-specific IsSimdValidOperationType() to check if this specific
// constructor is supported in asm.js.
if (!IsSimdValidOperationType(simdType, SimdOperation::Constructor))
return m.failName(initNode, "'%s' is not a supported SIMD type", field);
return m.addSimdCtor(varName, simdType, field);
}
static bool
CheckGlobalSimdOperationImport(ModuleValidator& m, const ModuleValidator::Global* global,
ParseNode* initNode, PropertyName* varName, PropertyName* opName)
{
SimdType simdType = global->simdCtorType();
SimdOperation simdOp;
if (!m.lookupStandardSimdOpName(opName, &simdOp))
return m.failName(initNode, "'%s' is not a standard SIMD operation", opName);
if (!IsSimdValidOperationType(simdType, simdOp))
return m.failName(initNode, "'%s' is not an operation supported by the SIMD type", opName);
return m.addSimdOperation(varName, simdType, simdOp, opName);
}
static bool
CheckGlobalDotImport(ModuleValidator& m, PropertyName* varName, ParseNode* initNode)
{
ParseNode* base = DotBase(initNode);
PropertyName* field = DotMember(initNode);
if (base->isKind(PNK_DOT)) {
ParseNode* global = DotBase(base);
PropertyName* mathOrAtomicsOrSimd = DotMember(base);
PropertyName* globalName = m.globalArgumentName();
if (!globalName)
return m.fail(base, "import statement requires the module have a stdlib parameter");
if (!IsUseOfName(global, globalName)) {
if (global->isKind(PNK_DOT)) {
return m.failName(base, "imports can have at most two dot accesses "
"(e.g. %s.Math.sin)", globalName);
}
return m.failName(base, "expecting %s.*", globalName);
}
if (mathOrAtomicsOrSimd == m.cx()->names().Math)
return CheckGlobalMathImport(m, initNode, varName, field);
if (mathOrAtomicsOrSimd == m.cx()->names().Atomics)
return CheckGlobalAtomicsImport(m, initNode, varName, field);
if (mathOrAtomicsOrSimd == m.cx()->names().SIMD)
return CheckGlobalSimdImport(m, initNode, varName, field);
return m.failName(base, "expecting %s.{Math|SIMD}", globalName);
}
if (!base->isKind(PNK_NAME))
return m.fail(base, "expected name of variable or parameter");
if (base->name() == m.globalArgumentName()) {
if (field == m.cx()->names().NaN)
return m.addGlobalConstant(varName, GenericNaN(), field);
if (field == m.cx()->names().Infinity)
return m.addGlobalConstant(varName, PositiveInfinity<double>(), field);
Scalar::Type type;
if (IsArrayViewCtorName(m, field, &type))
return m.addArrayViewCtor(varName, type, field);
return m.failName(initNode, "'%s' is not a standard constant or typed array name", field);
}
if (base->name() == m.importArgumentName())
return m.addFFI(varName, field);
const ModuleValidator::Global* global = m.lookupGlobal(base->name());
if (!global)
return m.failName(initNode, "%s not found in module global scope", base->name());
if (!global->isSimdCtor())
return m.failName(base, "expecting SIMD constructor name, got %s", field);
return CheckGlobalSimdOperationImport(m, global, initNode, varName, field);
}
static bool
CheckModuleGlobal(ModuleValidator& m, ParseNode* var, bool isConst)
{
if (!var->isKind(PNK_NAME))
return m.fail(var, "import variable is not a plain name");
if (!CheckModuleLevelName(m, var, var->name()))
return false;
ParseNode* initNode = MaybeInitializer(var);
if (!initNode)
return m.fail(var, "module import needs initializer");
if (IsNumericLiteral(m, initNode))
return CheckGlobalVariableInitConstant(m, var->name(), initNode, isConst);
if (initNode->isKind(PNK_BITOR) || initNode->isKind(PNK_POS) || initNode->isKind(PNK_CALL))
return CheckGlobalVariableInitImport(m, var->name(), initNode, isConst);
if (initNode->isKind(PNK_NEW))
return CheckNewArrayView(m, var->name(), initNode);
if (initNode->isKind(PNK_DOT))
return CheckGlobalDotImport(m, var->name(), initNode);
return m.fail(initNode, "unsupported import expression");
}
static bool
CheckModuleProcessingDirectives(ModuleValidator& m)
{
TokenStream& ts = m.parser().tokenStream;
while (true) {
bool matched;
if (!ts.matchToken(&matched, TOK_STRING, TokenStream::Operand))
return false;
if (!matched)
return true;
if (!IsIgnoredDirectiveName(m.cx(), ts.currentToken().atom()))
return m.failCurrentOffset("unsupported processing directive");
TokenKind tt;
if (!ts.getToken(&tt))
return false;
if (tt != TOK_SEMI)
return m.failCurrentOffset("expected semicolon after string literal");
}
}
static bool
CheckModuleGlobals(ModuleValidator& m)
{
while (true) {
ParseNode* varStmt;
if (!ParseVarOrConstStatement(m.parser(), &varStmt))
return false;
if (!varStmt)
break;
for (ParseNode* var = VarListHead(varStmt); var; var = NextNode(var)) {
if (!CheckModuleGlobal(m, var, varStmt->isKind(PNK_CONST)))
return false;
}
}
return true;
}
static bool
ArgFail(FunctionValidator& f, PropertyName* argName, ParseNode* stmt)
{
return f.failName(stmt, "expecting argument type declaration for '%s' of the "
"form 'arg = arg|0' or 'arg = +arg' or 'arg = fround(arg)'", argName);
}
static bool
CheckArgumentType(FunctionValidator& f, ParseNode* stmt, PropertyName* name, Type* type)
{
if (!stmt || !IsExpressionStatement(stmt))
return ArgFail(f, name, stmt ? stmt : f.fn());
ParseNode* initNode = ExpressionStatementExpr(stmt);
if (!initNode || !initNode->isKind(PNK_ASSIGN))
return ArgFail(f, name, stmt);
ParseNode* argNode = BinaryLeft(initNode);
ParseNode* coercionNode = BinaryRight(initNode);
if (!IsUseOfName(argNode, name))
return ArgFail(f, name, stmt);
ParseNode* coercedExpr;
if (!CheckTypeAnnotation(f.m(), coercionNode, type, &coercedExpr))
return false;
if (!type->isArgType())
return f.failName(stmt, "invalid type for argument '%s'", name);
if (!IsUseOfName(coercedExpr, name))
return ArgFail(f, name, stmt);
return true;
}
static bool
CheckProcessingDirectives(ModuleValidator& m, ParseNode** stmtIter)
{
ParseNode* stmt = *stmtIter;
while (stmt && IsIgnoredDirective(m.cx(), stmt))
stmt = NextNode(stmt);
*stmtIter = stmt;
return true;
}
static bool
CheckArguments(FunctionValidator& f, ParseNode** stmtIter, ValTypeVector* argTypes)
{
ParseNode* stmt = *stmtIter;
unsigned numFormals;
ParseNode* argpn = FunctionFormalParametersList(f.fn(), &numFormals);
for (unsigned i = 0; i < numFormals; i++, argpn = NextNode(argpn), stmt = NextNode(stmt)) {
PropertyName* name;
if (!CheckArgument(f.m(), argpn, &name))
return false;
Type type;
if (!CheckArgumentType(f, stmt, name, &type))
return false;
if (!argTypes->append(type.canonicalToValType()))
return false;
if (!f.addLocal(argpn, name, type))
return false;
}
*stmtIter = stmt;
return true;
}
static bool
IsLiteralOrConst(FunctionValidator& f, ParseNode* pn, NumLit* lit)
{
if (pn->isKind(PNK_NAME)) {
const ModuleValidator::Global* global = f.lookupGlobal(pn->name());
if (!global || global->which() != ModuleValidator::Global::ConstantLiteral)
return false;
*lit = global->constLiteralValue();
return true;
}
bool isSimd = false;
if (!IsNumericLiteral(f.m(), pn, &isSimd))
return false;
if (isSimd)
f.setUsesSimd();
*lit = ExtractNumericLiteral(f.m(), pn);
return true;
}
static bool
CheckFinalReturn(FunctionValidator& f, ParseNode* lastNonEmptyStmt)
{
if (!f.encoder().writeOp(Op::End))
return false;
if (!f.hasAlreadyReturned()) {
f.setReturnedType(ExprType::Void);
return true;
}
if (!lastNonEmptyStmt->isKind(PNK_RETURN) && !IsVoid(f.returnedType()))
return f.fail(lastNonEmptyStmt, "void incompatible with previous return type");
return true;
}
static bool
CheckVariable(FunctionValidator& f, ParseNode* var, ValTypeVector* types, Vector<NumLit>* inits)
{
if (!var->isKind(PNK_NAME))
return f.fail(var, "local variable is not a plain name");
PropertyName* name = var->name();
if (!CheckIdentifier(f.m(), var, name))
return false;
ParseNode* initNode = MaybeInitializer(var);
if (!initNode)
return f.failName(var, "var '%s' needs explicit type declaration via an initial value", name);
NumLit lit;
if (!IsLiteralOrConst(f, initNode, &lit))
return f.failName(var, "var '%s' initializer must be literal or const literal", name);
if (!lit.valid())
return f.failName(var, "var '%s' initializer out of range", name);
Type type = Type::canonicalize(Type::lit(lit));
return f.addLocal(var, name, type) &&
types->append(type.canonicalToValType()) &&
inits->append(lit);
}
static bool
CheckVariables(FunctionValidator& f, ParseNode** stmtIter)
{
ParseNode* stmt = *stmtIter;
uint32_t firstVar = f.numLocals();
ValTypeVector types;
Vector<NumLit> inits(f.cx());
for (; stmt && stmt->isKind(PNK_VAR); stmt = NextNonEmptyStatement(stmt)) {
for (ParseNode* var = VarListHead(stmt); var; var = NextNode(var)) {
if (!CheckVariable(f, var, &types, &inits))
return false;
}
}
MOZ_ASSERT(f.encoder().empty());
if (!EncodeLocalEntries(f.encoder(), types))
return false;
for (uint32_t i = 0; i < inits.length(); i++) {
NumLit lit = inits[i];
if (lit.isZeroBits())
continue;
if (!f.writeConstExpr(lit))
return false;
if (!f.encoder().writeOp(Op::SetLocal))
return false;
if (!f.encoder().writeVarU32(firstVar + i))
return false;
}
*stmtIter = stmt;
return true;
}
static bool
CheckExpr(FunctionValidator& f, ParseNode* op, Type* type);
static bool
CheckNumericLiteral(FunctionValidator& f, ParseNode* num, Type* type)
{
NumLit lit = ExtractNumericLiteral(f.m(), num);
if (!lit.valid())
return f.fail(num, "numeric literal out of representable integer range");
*type = Type::lit(lit);
return f.writeConstExpr(lit);
}
static bool
CheckVarRef(FunctionValidator& f, ParseNode* varRef, Type* type)
{
PropertyName* name = varRef->name();
if (const FunctionValidator::Local* local = f.lookupLocal(name)) {
if (!f.encoder().writeOp(Op::GetLocal))
return false;
if (!f.encoder().writeVarU32(local->slot))
return false;
*type = local->type;
return true;
}
if (const ModuleValidator::Global* global = f.lookupGlobal(name)) {
switch (global->which()) {
case ModuleValidator::Global::ConstantLiteral:
*type = global->varOrConstType();
return f.writeConstExpr(global->constLiteralValue());
case ModuleValidator::Global::ConstantImport:
case ModuleValidator::Global::Variable: {
*type = global->varOrConstType();
return f.encoder().writeOp(Op::GetGlobal) &&
f.encoder().writeVarU32(global->varOrConstIndex());
}
case ModuleValidator::Global::Function:
case ModuleValidator::Global::FFI:
case ModuleValidator::Global::MathBuiltinFunction:
case ModuleValidator::Global::AtomicsBuiltinFunction:
case ModuleValidator::Global::FuncPtrTable:
case ModuleValidator::Global::ArrayView:
case ModuleValidator::Global::ArrayViewCtor:
case ModuleValidator::Global::SimdCtor:
case ModuleValidator::Global::SimdOp:
break;
}
return f.failName(varRef, "'%s' may not be accessed by ordinary expressions", name);
}
return f.failName(varRef, "'%s' not found in local or asm.js module scope", name);
}
static inline bool
IsLiteralOrConstInt(FunctionValidator& f, ParseNode* pn, uint32_t* u32)
{
NumLit lit;
if (!IsLiteralOrConst(f, pn, &lit))
return false;
return IsLiteralInt(lit, u32);
}
static const int32_t NoMask = -1;
static const bool YesSimd = true;
static const bool NoSimd = false;
static bool
CheckArrayAccess(FunctionValidator& f, ParseNode* viewName, ParseNode* indexExpr,
bool isSimd, Scalar::Type* viewType)
{
if (!viewName->isKind(PNK_NAME))
return f.fail(viewName, "base of array access must be a typed array view name");
const ModuleValidator::Global* global = f.lookupGlobal(viewName->name());
if (!global || !global->isAnyArrayView())
return f.fail(viewName, "base of array access must be a typed array view name");
*viewType = global->viewType();
uint32_t index;
if (IsLiteralOrConstInt(f, indexExpr, &index)) {
uint64_t byteOffset = uint64_t(index) << TypedArrayShift(*viewType);
uint64_t width = isSimd ? Simd128DataSize : TypedArrayElemSize(*viewType);
if (!f.m().tryConstantAccess(byteOffset, width))
return f.fail(indexExpr, "constant index out of range");
return f.writeInt32Lit(byteOffset);
}
// Mask off the low bits to account for the clearing effect of a right shift
// followed by the left shift implicit in the array access. E.g., H32[i>>2]
// loses the low two bits.
int32_t mask = ~(TypedArrayElemSize(*viewType) - 1);
if (indexExpr->isKind(PNK_RSH)) {
ParseNode* shiftAmountNode = BitwiseRight(indexExpr);
uint32_t shift;
if (!IsLiteralInt(f.m(), shiftAmountNode, &shift))
return f.failf(shiftAmountNode, "shift amount must be constant");
unsigned requiredShift = TypedArrayShift(*viewType);
if (shift != requiredShift)
return f.failf(shiftAmountNode, "shift amount must be %u", requiredShift);
ParseNode* pointerNode = BitwiseLeft(indexExpr);
Type pointerType;
if (!CheckExpr(f, pointerNode, &pointerType))
return false;
if (!pointerType.isIntish())
return f.failf(pointerNode, "%s is not a subtype of int", pointerType.toChars());
} else {
// For SIMD access, and legacy scalar access compatibility, accept
// Int8/Uint8 accesses with no shift.
if (TypedArrayShift(*viewType) != 0)
return f.fail(indexExpr, "index expression isn't shifted; must be an Int8/Uint8 access");
MOZ_ASSERT(mask == NoMask);
ParseNode* pointerNode = indexExpr;
Type pointerType;
if (!CheckExpr(f, pointerNode, &pointerType))
return false;
if (isSimd) {
if (!pointerType.isIntish())
return f.failf(pointerNode, "%s is not a subtype of intish", pointerType.toChars());
} else {
if (!pointerType.isInt())
return f.failf(pointerNode, "%s is not a subtype of int", pointerType.toChars());
}
}
// Don't generate the mask op if there is no need for it which could happen for
// a shift of zero or a SIMD access.
if (mask != NoMask) {
return f.writeInt32Lit(mask) &&
f.encoder().writeOp(Op::I32And);
}
return true;
}
static bool
CheckAndPrepareArrayAccess(FunctionValidator& f, ParseNode* viewName, ParseNode* indexExpr,
bool isSimd, Scalar::Type* viewType)
{
return CheckArrayAccess(f, viewName, indexExpr, isSimd, viewType);
}
static bool
WriteArrayAccessFlags(FunctionValidator& f, Scalar::Type viewType)
{
// asm.js only has naturally-aligned accesses.
size_t align = TypedArrayElemSize(viewType);
MOZ_ASSERT(IsPowerOfTwo(align));
if (!f.encoder().writeFixedU8(CeilingLog2(align)))
return false;
// asm.js doesn't have constant offsets, so just encode a 0.
if (!f.encoder().writeVarU32(0))
return false;
return true;
}
static bool
CheckLoadArray(FunctionValidator& f, ParseNode* elem, Type* type)
{
Scalar::Type viewType;
if (!CheckAndPrepareArrayAccess(f, ElemBase(elem), ElemIndex(elem), NoSimd, &viewType))
return false;
switch (viewType) {
case Scalar::Int8: if (!f.encoder().writeOp(Op::I32Load8S)) return false; break;
case Scalar::Uint8: if (!f.encoder().writeOp(Op::I32Load8U)) return false; break;
case Scalar::Int16: if (!f.encoder().writeOp(Op::I32Load16S)) return false; break;
case Scalar::Uint16: if (!f.encoder().writeOp(Op::I32Load16U)) return false; break;
case Scalar::Uint32:
case Scalar::Int32: if (!f.encoder().writeOp(Op::I32Load)) return false; break;
case Scalar::Float32: if (!f.encoder().writeOp(Op::F32Load)) return false; break;
case Scalar::Float64: if (!f.encoder().writeOp(Op::F64Load)) return false; break;
default: MOZ_CRASH("unexpected scalar type");
}
switch (viewType) {
case Scalar::Int8:
case Scalar::Int16:
case Scalar::Int32:
case Scalar::Uint8:
case Scalar::Uint16:
case Scalar::Uint32:
*type = Type::Intish;
break;
case Scalar::Float32:
*type = Type::MaybeFloat;
break;
case Scalar::Float64:
*type = Type::MaybeDouble;
break;
default: MOZ_CRASH("Unexpected array type");
}
if (!WriteArrayAccessFlags(f, viewType))
return false;
return true;
}
static bool
CheckStoreArray(FunctionValidator& f, ParseNode* lhs, ParseNode* rhs, Type* type)
{
Scalar::Type viewType;
if (!CheckAndPrepareArrayAccess(f, ElemBase(lhs), ElemIndex(lhs), NoSimd, &viewType))
return false;
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
switch (viewType) {
case Scalar::Int8:
case Scalar::Int16:
case Scalar::Int32:
case Scalar::Uint8:
case Scalar::Uint16:
case Scalar::Uint32:
if (!rhsType.isIntish())
return f.failf(lhs, "%s is not a subtype of intish", rhsType.toChars());
break;
case Scalar::Float32:
if (!rhsType.isMaybeDouble() && !rhsType.isFloatish())
return f.failf(lhs, "%s is not a subtype of double? or floatish", rhsType.toChars());
break;
case Scalar::Float64:
if (!rhsType.isMaybeFloat() && !rhsType.isMaybeDouble())
return f.failf(lhs, "%s is not a subtype of float? or double?", rhsType.toChars());
break;
default:
MOZ_CRASH("Unexpected view type");
}
switch (viewType) {
case Scalar::Int8:
case Scalar::Uint8:
if (!f.encoder().writeOp(Op::I32TeeStore8))
return false;
break;
case Scalar::Int16:
case Scalar::Uint16:
if (!f.encoder().writeOp(Op::I32TeeStore16))
return false;
break;
case Scalar::Int32:
case Scalar::Uint32:
if (!f.encoder().writeOp(Op::I32TeeStore))
return false;
break;
case Scalar::Float32:
if (rhsType.isFloatish()) {
if (!f.encoder().writeOp(Op::F32TeeStore))
return false;
} else {
if (!f.encoder().writeOp(Op::F64TeeStoreF32))
return false;
}
break;
case Scalar::Float64:
if (rhsType.isFloatish()) {
if (!f.encoder().writeOp(Op::F32TeeStoreF64))
return false;
} else {
if (!f.encoder().writeOp(Op::F64TeeStore))
return false;
}
break;
default: MOZ_CRASH("unexpected scalar type");
}
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = rhsType;
return true;
}
static bool
CheckAssignName(FunctionValidator& f, ParseNode* lhs, ParseNode* rhs, Type* type)
{
RootedPropertyName name(f.cx(), lhs->name());
if (const FunctionValidator::Local* lhsVar = f.lookupLocal(name)) {
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (!f.encoder().writeOp(Op::TeeLocal))
return false;
if (!f.encoder().writeVarU32(lhsVar->slot))
return false;
if (!(rhsType <= lhsVar->type)) {
return f.failf(lhs, "%s is not a subtype of %s",
rhsType.toChars(), lhsVar->type.toChars());
}
*type = rhsType;
return true;
}
if (const ModuleValidator::Global* global = f.lookupGlobal(name)) {
if (global->which() != ModuleValidator::Global::Variable)
return f.failName(lhs, "'%s' is not a mutable variable", name);
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
Type globType = global->varOrConstType();
if (!(rhsType <= globType))
return f.failf(lhs, "%s is not a subtype of %s", rhsType.toChars(), globType.toChars());
if (!f.encoder().writeOp(Op::TeeGlobal))
return false;
if (!f.encoder().writeVarU32(global->varOrConstIndex()))
return false;
*type = rhsType;
return true;
}
return f.failName(lhs, "'%s' not found in local or asm.js module scope", name);
}
static bool
CheckAssign(FunctionValidator& f, ParseNode* assign, Type* type)
{
MOZ_ASSERT(assign->isKind(PNK_ASSIGN));
ParseNode* lhs = BinaryLeft(assign);
ParseNode* rhs = BinaryRight(assign);
if (lhs->getKind() == PNK_ELEM)
return CheckStoreArray(f, lhs, rhs, type);
if (lhs->getKind() == PNK_NAME)
return CheckAssignName(f, lhs, rhs, type);
return f.fail(assign, "left-hand side of assignment must be a variable or array access");
}
static bool
CheckMathIMul(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 2)
return f.fail(call, "Math.imul must be passed 2 arguments");
ParseNode* lhs = CallArgList(call);
ParseNode* rhs = NextNode(lhs);
Type lhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (!lhsType.isIntish())
return f.failf(lhs, "%s is not a subtype of intish", lhsType.toChars());
if (!rhsType.isIntish())
return f.failf(rhs, "%s is not a subtype of intish", rhsType.toChars());
*type = Type::Signed;
return f.encoder().writeOp(Op::I32Mul);
}
static bool
CheckMathClz32(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 1)
return f.fail(call, "Math.clz32 must be passed 1 argument");
ParseNode* arg = CallArgList(call);
Type argType;
if (!CheckExpr(f, arg, &argType))
return false;
if (!argType.isIntish())
return f.failf(arg, "%s is not a subtype of intish", argType.toChars());
*type = Type::Fixnum;
return f.encoder().writeOp(Op::I32Clz);
}
static bool
CheckMathAbs(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 1)
return f.fail(call, "Math.abs must be passed 1 argument");
ParseNode* arg = CallArgList(call);
Type argType;
if (!CheckExpr(f, arg, &argType))
return false;
if (argType.isSigned()) {
*type = Type::Unsigned;
return f.encoder().writeOp(Op::I32Abs);
}
if (argType.isMaybeDouble()) {
*type = Type::Double;
return f.encoder().writeOp(Op::F64Abs);
}
if (argType.isMaybeFloat()) {
*type = Type::Floatish;
return f.encoder().writeOp(Op::F32Abs);
}
return f.failf(call, "%s is not a subtype of signed, float? or double?", argType.toChars());
}
static bool
CheckMathSqrt(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 1)
return f.fail(call, "Math.sqrt must be passed 1 argument");
ParseNode* arg = CallArgList(call);
Type argType;
if (!CheckExpr(f, arg, &argType))
return false;
if (argType.isMaybeDouble()) {
*type = Type::Double;
return f.encoder().writeOp(Op::F64Sqrt);
}
if (argType.isMaybeFloat()) {
*type = Type::Floatish;
return f.encoder().writeOp(Op::F32Sqrt);
}
return f.failf(call, "%s is neither a subtype of double? nor float?", argType.toChars());
}
static bool
CheckMathMinMax(FunctionValidator& f, ParseNode* callNode, bool isMax, Type* type)
{
if (CallArgListLength(callNode) < 2)
return f.fail(callNode, "Math.min/max must be passed at least 2 arguments");
ParseNode* firstArg = CallArgList(callNode);
Type firstType;
if (!CheckExpr(f, firstArg, &firstType))
return false;
Op op;
if (firstType.isMaybeDouble()) {
*type = Type::Double;
firstType = Type::MaybeDouble;
op = isMax ? Op::F64Max : Op::F64Min;
} else if (firstType.isMaybeFloat()) {
*type = Type::Float;
firstType = Type::MaybeFloat;
op = isMax ? Op::F32Max : Op::F32Min;
} else if (firstType.isSigned()) {
*type = Type::Signed;
firstType = Type::Signed;
op = isMax ? Op::I32Max : Op::I32Min;
} else {
return f.failf(firstArg, "%s is not a subtype of double?, float? or signed",
firstType.toChars());
}
unsigned numArgs = CallArgListLength(callNode);
ParseNode* nextArg = NextNode(firstArg);
for (unsigned i = 1; i < numArgs; i++, nextArg = NextNode(nextArg)) {
Type nextType;
if (!CheckExpr(f, nextArg, &nextType))
return false;
if (!(nextType <= firstType))
return f.failf(nextArg, "%s is not a subtype of %s", nextType.toChars(), firstType.toChars());
if (!f.encoder().writeOp(op))
return false;
}
return true;
}
static bool
CheckSharedArrayAtomicAccess(FunctionValidator& f, ParseNode* viewName, ParseNode* indexExpr,
Scalar::Type* viewType)
{
if (!CheckAndPrepareArrayAccess(f, viewName, indexExpr, NoSimd, viewType))
return false;
// The global will be sane, CheckArrayAccess checks it.
const ModuleValidator::Global* global = f.lookupGlobal(viewName->name());
if (global->which() != ModuleValidator::Global::ArrayView)
return f.fail(viewName, "base of array access must be a typed array view");
MOZ_ASSERT(f.m().atomicsPresent());
switch (*viewType) {
case Scalar::Int8:
case Scalar::Int16:
case Scalar::Int32:
case Scalar::Uint8:
case Scalar::Uint16:
case Scalar::Uint32:
return true;
default:
return f.failf(viewName, "not an integer array");
}
return true;
}
static bool
WriteAtomicOperator(FunctionValidator& f, Op opcode, Scalar::Type viewType)
{
return f.encoder().writeOp(opcode) &&
f.encoder().writeFixedU8(viewType);
}
static bool
CheckAtomicsLoad(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 2)
return f.fail(call, "Atomics.load must be passed 2 arguments");
ParseNode* arrayArg = CallArgList(call);
ParseNode* indexArg = NextNode(arrayArg);
Scalar::Type viewType;
if (!CheckSharedArrayAtomicAccess(f, arrayArg, indexArg, &viewType))
return false;
if (!WriteAtomicOperator(f, Op::I32AtomicsLoad, viewType))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = Type::Int;
return true;
}
static bool
CheckAtomicsStore(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 3)
return f.fail(call, "Atomics.store must be passed 3 arguments");
ParseNode* arrayArg = CallArgList(call);
ParseNode* indexArg = NextNode(arrayArg);
ParseNode* valueArg = NextNode(indexArg);
Type rhsType;
if (!CheckExpr(f, valueArg, &rhsType))
return false;
if (!rhsType.isIntish())
return f.failf(arrayArg, "%s is not a subtype of intish", rhsType.toChars());
Scalar::Type viewType;
if (!CheckSharedArrayAtomicAccess(f, arrayArg, indexArg, &viewType))
return false;
if (!WriteAtomicOperator(f, Op::I32AtomicsStore, viewType))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = rhsType;
return true;
}
static bool
CheckAtomicsBinop(FunctionValidator& f, ParseNode* call, Type* type, AtomicOp op)
{
if (CallArgListLength(call) != 3)
return f.fail(call, "Atomics binary operator must be passed 3 arguments");
ParseNode* arrayArg = CallArgList(call);
ParseNode* indexArg = NextNode(arrayArg);
ParseNode* valueArg = NextNode(indexArg);
Type valueArgType;
if (!CheckExpr(f, valueArg, &valueArgType))
return false;
if (!valueArgType.isIntish())
return f.failf(valueArg, "%s is not a subtype of intish", valueArgType.toChars());
Scalar::Type viewType;
if (!CheckSharedArrayAtomicAccess(f, arrayArg, indexArg, &viewType))
return false;
if (!WriteAtomicOperator(f, Op::I32AtomicsBinOp, viewType))
return false;
if (!f.encoder().writeFixedU8(uint8_t(op)))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = Type::Int;
return true;
}
static bool
CheckAtomicsIsLockFree(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 1)
return f.fail(call, "Atomics.isLockFree must be passed 1 argument");
ParseNode* sizeArg = CallArgList(call);
uint32_t size;
if (!IsLiteralInt(f.m(), sizeArg, &size))
return f.fail(sizeArg, "Atomics.isLockFree requires an integer literal argument");
*type = Type::Int;
return f.writeInt32Lit(AtomicOperations::isLockfree(size));
}
static bool
CheckAtomicsCompareExchange(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 4)
return f.fail(call, "Atomics.compareExchange must be passed 4 arguments");
ParseNode* arrayArg = CallArgList(call);
ParseNode* indexArg = NextNode(arrayArg);
ParseNode* oldValueArg = NextNode(indexArg);
ParseNode* newValueArg = NextNode(oldValueArg);
Type oldValueArgType;
if (!CheckExpr(f, oldValueArg, &oldValueArgType))
return false;
Type newValueArgType;
if (!CheckExpr(f, newValueArg, &newValueArgType))
return false;
if (!oldValueArgType.isIntish())
return f.failf(oldValueArg, "%s is not a subtype of intish", oldValueArgType.toChars());
if (!newValueArgType.isIntish())
return f.failf(newValueArg, "%s is not a subtype of intish", newValueArgType.toChars());
Scalar::Type viewType;
if (!CheckSharedArrayAtomicAccess(f, arrayArg, indexArg, &viewType))
return false;
if (!WriteAtomicOperator(f, Op::I32AtomicsCompareExchange, viewType))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = Type::Int;
return true;
}
static bool
CheckAtomicsExchange(FunctionValidator& f, ParseNode* call, Type* type)
{
if (CallArgListLength(call) != 3)
return f.fail(call, "Atomics.exchange must be passed 3 arguments");
ParseNode* arrayArg = CallArgList(call);
ParseNode* indexArg = NextNode(arrayArg);
ParseNode* valueArg = NextNode(indexArg);
Type valueArgType;
if (!CheckExpr(f, valueArg, &valueArgType))
return false;
if (!valueArgType.isIntish())
return f.failf(arrayArg, "%s is not a subtype of intish", valueArgType.toChars());
Scalar::Type viewType;
if (!CheckSharedArrayAtomicAccess(f, arrayArg, indexArg, &viewType))
return false;
if (!WriteAtomicOperator(f, Op::I32AtomicsExchange, viewType))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = Type::Int;
return true;
}
static bool
CheckAtomicsBuiltinCall(FunctionValidator& f, ParseNode* callNode, AsmJSAtomicsBuiltinFunction func,
Type* type)
{
f.setUsesAtomics();
switch (func) {
case AsmJSAtomicsBuiltin_compareExchange:
return CheckAtomicsCompareExchange(f, callNode, type);
case AsmJSAtomicsBuiltin_exchange:
return CheckAtomicsExchange(f, callNode, type);
case AsmJSAtomicsBuiltin_load:
return CheckAtomicsLoad(f, callNode, type);
case AsmJSAtomicsBuiltin_store:
return CheckAtomicsStore(f, callNode, type);
case AsmJSAtomicsBuiltin_add:
return CheckAtomicsBinop(f, callNode, type, AtomicFetchAddOp);
case AsmJSAtomicsBuiltin_sub:
return CheckAtomicsBinop(f, callNode, type, AtomicFetchSubOp);
case AsmJSAtomicsBuiltin_and:
return CheckAtomicsBinop(f, callNode, type, AtomicFetchAndOp);
case AsmJSAtomicsBuiltin_or:
return CheckAtomicsBinop(f, callNode, type, AtomicFetchOrOp);
case AsmJSAtomicsBuiltin_xor:
return CheckAtomicsBinop(f, callNode, type, AtomicFetchXorOp);
case AsmJSAtomicsBuiltin_isLockFree:
return CheckAtomicsIsLockFree(f, callNode, type);
default:
MOZ_CRASH("unexpected atomicsBuiltin function");
}
}
typedef bool (*CheckArgType)(FunctionValidator& f, ParseNode* argNode, Type type);
template <CheckArgType checkArg>
static bool
CheckCallArgs(FunctionValidator& f, ParseNode* callNode, ValTypeVector* args)
{
ParseNode* argNode = CallArgList(callNode);
for (unsigned i = 0; i < CallArgListLength(callNode); i++, argNode = NextNode(argNode)) {
Type type;
if (!CheckExpr(f, argNode, &type))
return false;
if (!checkArg(f, argNode, type))
return false;
if (!args->append(Type::canonicalize(type).canonicalToValType()))
return false;
}
return true;
}
static bool
CheckSignatureAgainstExisting(ModuleValidator& m, ParseNode* usepn, const Sig& sig, const Sig& existing)
{
if (sig.args().length() != existing.args().length()) {
return m.failf(usepn, "incompatible number of arguments (%" PRIuSIZE
" here vs. %" PRIuSIZE " before)",
sig.args().length(), existing.args().length());
}
for (unsigned i = 0; i < sig.args().length(); i++) {
if (sig.arg(i) != existing.arg(i)) {
return m.failf(usepn, "incompatible type for argument %u: (%s here vs. %s before)", i,
ToCString(sig.arg(i)), ToCString(existing.arg(i)));
}
}
if (sig.ret() != existing.ret()) {
return m.failf(usepn, "%s incompatible with previous return of type %s",
ToCString(sig.ret()), ToCString(existing.ret()));
}
MOZ_ASSERT(sig == existing);
return true;
}
static bool
CheckFunctionSignature(ModuleValidator& m, ParseNode* usepn, Sig&& sig, PropertyName* name,
ModuleValidator::Func** func)
{
ModuleValidator::Func* existing = m.lookupFunction(name);
if (!existing) {
if (!CheckModuleLevelName(m, usepn, name))
return false;
return m.addFunction(name, usepn->pn_pos.begin, Move(sig), func);
}
if (!CheckSignatureAgainstExisting(m, usepn, sig, m.mg().funcSig(existing->index())))
return false;
*func = existing;
return true;
}
static bool
CheckIsArgType(FunctionValidator& f, ParseNode* argNode, Type type)
{
if (!type.isArgType())
return f.failf(argNode,
"%s is not a subtype of int, float, double, or an allowed SIMD type",
type.toChars());
return true;
}
static bool
CheckInternalCall(FunctionValidator& f, ParseNode* callNode, PropertyName* calleeName,
Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
ValTypeVector args;
if (!CheckCallArgs<CheckIsArgType>(f, callNode, &args))
return false;
Sig sig(Move(args), ret.canonicalToExprType());
ModuleValidator::Func* callee;
if (!CheckFunctionSignature(f.m(), callNode, Move(sig), calleeName, &callee))
return false;
if (!f.writeCall(callNode, Op::Call))
return false;
if (!f.encoder().writeVarU32(callee->index()))
return false;
*type = Type::ret(ret);
return true;
}
static bool
CheckFuncPtrTableAgainstExisting(ModuleValidator& m, ParseNode* usepn, PropertyName* name,
Sig&& sig, unsigned mask, uint32_t* funcPtrTableIndex)
{
if (const ModuleValidator::Global* existing = m.lookupGlobal(name)) {
if (existing->which() != ModuleValidator::Global::FuncPtrTable)
return m.failName(usepn, "'%s' is not a function-pointer table", name);
ModuleValidator::FuncPtrTable& table = m.funcPtrTable(existing->funcPtrTableIndex());
if (mask != table.mask())
return m.failf(usepn, "mask does not match previous value (%u)", table.mask());
if (!CheckSignatureAgainstExisting(m, usepn, sig, m.mg().sig(table.sigIndex())))
return false;
*funcPtrTableIndex = existing->funcPtrTableIndex();
return true;
}
if (!CheckModuleLevelName(m, usepn, name))
return false;
if (!m.declareFuncPtrTable(Move(sig), name, usepn->pn_pos.begin, mask, funcPtrTableIndex))
return false;
return true;
}
static bool
CheckFuncPtrCall(FunctionValidator& f, ParseNode* callNode, Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
ParseNode* callee = CallCallee(callNode);
ParseNode* tableNode = ElemBase(callee);
ParseNode* indexExpr = ElemIndex(callee);
if (!tableNode->isKind(PNK_NAME))
return f.fail(tableNode, "expecting name of function-pointer array");
PropertyName* name = tableNode->name();
if (const ModuleValidator::Global* existing = f.lookupGlobal(name)) {
if (existing->which() != ModuleValidator::Global::FuncPtrTable)
return f.failName(tableNode, "'%s' is not the name of a function-pointer array", name);
}
if (!indexExpr->isKind(PNK_BITAND))
return f.fail(indexExpr, "function-pointer table index expression needs & mask");
ParseNode* indexNode = BitwiseLeft(indexExpr);
ParseNode* maskNode = BitwiseRight(indexExpr);
uint32_t mask;
if (!IsLiteralInt(f.m(), maskNode, &mask) || mask == UINT32_MAX || !IsPowerOfTwo(mask + 1))
return f.fail(maskNode, "function-pointer table index mask value must be a power of two minus 1");
Type indexType;
if (!CheckExpr(f, indexNode, &indexType))
return false;
if (!indexType.isIntish())
return f.failf(indexNode, "%s is not a subtype of intish", indexType.toChars());
ValTypeVector args;
if (!CheckCallArgs<CheckIsArgType>(f, callNode, &args))
return false;
Sig sig(Move(args), ret.canonicalToExprType());
uint32_t tableIndex;
if (!CheckFuncPtrTableAgainstExisting(f.m(), tableNode, name, Move(sig), mask, &tableIndex))
return false;
if (!f.writeCall(callNode, Op::OldCallIndirect))
return false;
// Call signature
if (!f.encoder().writeVarU32(f.m().funcPtrTable(tableIndex).sigIndex()))
return false;
*type = Type::ret(ret);
return true;
}
static bool
CheckIsExternType(FunctionValidator& f, ParseNode* argNode, Type type)
{
if (!type.isExtern())
return f.failf(argNode, "%s is not a subtype of extern", type.toChars());
return true;
}
static bool
CheckFFICall(FunctionValidator& f, ParseNode* callNode, unsigned ffiIndex, Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
PropertyName* calleeName = CallCallee(callNode)->name();
if (ret.isFloat())
return f.fail(callNode, "FFI calls can't return float");
if (ret.isSimd())
return f.fail(callNode, "FFI calls can't return SIMD values");
ValTypeVector args;
if (!CheckCallArgs<CheckIsExternType>(f, callNode, &args))
return false;
Sig sig(Move(args), ret.canonicalToExprType());
uint32_t funcIndex;
if (!f.m().declareImport(calleeName, Move(sig), ffiIndex, &funcIndex))
return false;
if (!f.writeCall(callNode, Op::Call))
return false;
if (!f.encoder().writeVarU32(funcIndex))
return false;
*type = Type::ret(ret);
return true;
}
static bool
CheckFloatCoercionArg(FunctionValidator& f, ParseNode* inputNode, Type inputType)
{
if (inputType.isMaybeDouble())
return f.encoder().writeOp(Op::F32DemoteF64);
if (inputType.isSigned())
return f.encoder().writeOp(Op::F32ConvertSI32);
if (inputType.isUnsigned())
return f.encoder().writeOp(Op::F32ConvertUI32);
if (inputType.isFloatish())
return true;
return f.failf(inputNode, "%s is not a subtype of signed, unsigned, double? or floatish",
inputType.toChars());
}
static bool
CheckCoercedCall(FunctionValidator& f, ParseNode* call, Type ret, Type* type);
static bool
CheckCoercionArg(FunctionValidator& f, ParseNode* arg, Type expected, Type* type)
{
MOZ_ASSERT(expected.isCanonicalValType());
if (arg->isKind(PNK_CALL))
return CheckCoercedCall(f, arg, expected, type);
Type argType;
if (!CheckExpr(f, arg, &argType))
return false;
if (expected.isFloat()) {
if (!CheckFloatCoercionArg(f, arg, argType))
return false;
} else if (expected.isSimd()) {
if (!(argType <= expected))
return f.fail(arg, "argument to SIMD coercion isn't from the correct SIMD type");
} else {
MOZ_CRASH("not call coercions");
}
*type = Type::ret(expected);
return true;
}
static bool
CheckMathFRound(FunctionValidator& f, ParseNode* callNode, Type* type)
{
if (CallArgListLength(callNode) != 1)
return f.fail(callNode, "Math.fround must be passed 1 argument");
ParseNode* argNode = CallArgList(callNode);
Type argType;
if (!CheckCoercionArg(f, argNode, Type::Float, &argType))
return false;
MOZ_ASSERT(argType == Type::Float);
*type = Type::Float;
return true;
}
static bool
CheckMathBuiltinCall(FunctionValidator& f, ParseNode* callNode, AsmJSMathBuiltinFunction func,
Type* type)
{
unsigned arity = 0;
Op f32;
Op f64;
switch (func) {
case AsmJSMathBuiltin_imul: return CheckMathIMul(f, callNode, type);
case AsmJSMathBuiltin_clz32: return CheckMathClz32(f, callNode, type);
case AsmJSMathBuiltin_abs: return CheckMathAbs(f, callNode, type);
case AsmJSMathBuiltin_sqrt: return CheckMathSqrt(f, callNode, type);
case AsmJSMathBuiltin_fround: return CheckMathFRound(f, callNode, type);
case AsmJSMathBuiltin_min: return CheckMathMinMax(f, callNode, /* isMax = */ false, type);
case AsmJSMathBuiltin_max: return CheckMathMinMax(f, callNode, /* isMax = */ true, type);
case AsmJSMathBuiltin_ceil: arity = 1; f64 = Op::F64Ceil; f32 = Op::F32Ceil; break;
case AsmJSMathBuiltin_floor: arity = 1; f64 = Op::F64Floor; f32 = Op::F32Floor; break;
case AsmJSMathBuiltin_sin: arity = 1; f64 = Op::F64Sin; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_cos: arity = 1; f64 = Op::F64Cos; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_tan: arity = 1; f64 = Op::F64Tan; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_asin: arity = 1; f64 = Op::F64Asin; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_acos: arity = 1; f64 = Op::F64Acos; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_atan: arity = 1; f64 = Op::F64Atan; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_exp: arity = 1; f64 = Op::F64Exp; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_log: arity = 1; f64 = Op::F64Log; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_pow: arity = 2; f64 = Op::F64Pow; f32 = Op::Unreachable; break;
case AsmJSMathBuiltin_atan2: arity = 2; f64 = Op::F64Atan2; f32 = Op::Unreachable; break;
default: MOZ_CRASH("unexpected mathBuiltin function");
}
unsigned actualArity = CallArgListLength(callNode);
if (actualArity != arity)
return f.failf(callNode, "call passed %u arguments, expected %u", actualArity, arity);
if (!f.prepareCall(callNode))
return false;
Type firstType;
ParseNode* argNode = CallArgList(callNode);
if (!CheckExpr(f, argNode, &firstType))
return false;
if (!firstType.isMaybeFloat() && !firstType.isMaybeDouble())
return f.fail(argNode, "arguments to math call should be a subtype of double? or float?");
bool opIsDouble = firstType.isMaybeDouble();
if (!opIsDouble && f32 == Op::Unreachable)
return f.fail(callNode, "math builtin cannot be used as float");
if (arity == 2) {
Type secondType;
argNode = NextNode(argNode);
if (!CheckExpr(f, argNode, &secondType))
return false;
if (firstType.isMaybeDouble() && !secondType.isMaybeDouble())
return f.fail(argNode, "both arguments to math builtin call should be the same type");
if (firstType.isMaybeFloat() && !secondType.isMaybeFloat())
return f.fail(argNode, "both arguments to math builtin call should be the same type");
}
if (opIsDouble) {
if (!f.encoder().writeOp(f64))
return false;
} else {
if (!f.encoder().writeOp(f32))
return false;
}
*type = opIsDouble ? Type::Double : Type::Floatish;
return true;
}
namespace {
// Include CheckSimdCallArgs in unnamed namespace to avoid MSVC name lookup bug.
template<class CheckArgOp>
static bool
CheckSimdCallArgs(FunctionValidator& f, ParseNode* call, unsigned expectedArity,
const CheckArgOp& checkArg)
{
unsigned numArgs = CallArgListLength(call);
if (numArgs != expectedArity)
return f.failf(call, "expected %u arguments to SIMD call, got %u", expectedArity, numArgs);
ParseNode* arg = CallArgList(call);
for (size_t i = 0; i < numArgs; i++, arg = NextNode(arg)) {
MOZ_ASSERT(!!arg);
Type argType;
if (!CheckExpr(f, arg, &argType))
return false;
if (!checkArg(f, arg, i, argType))
return false;
}
return true;
}
class CheckArgIsSubtypeOf
{
Type formalType_;
public:
explicit CheckArgIsSubtypeOf(SimdType t) : formalType_(t) {}
bool operator()(FunctionValidator& f, ParseNode* arg, unsigned argIndex, Type actualType) const
{
if (!(actualType <= formalType_)) {
return f.failf(arg, "%s is not a subtype of %s", actualType.toChars(),
formalType_.toChars());
}
return true;
}
};
static inline Type
SimdToCoercedScalarType(SimdType t)
{
switch (t) {
case SimdType::Int8x16:
case SimdType::Int16x8:
case SimdType::Int32x4:
case SimdType::Uint8x16:
case SimdType::Uint16x8:
case SimdType::Uint32x4:
case SimdType::Bool8x16:
case SimdType::Bool16x8:
case SimdType::Bool32x4:
return Type::Intish;
case SimdType::Float32x4:
return Type::Floatish;
default:
break;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("unexpected SIMD type");
}
class CheckSimdScalarArgs
{
SimdType simdType_;
Type formalType_;
public:
explicit CheckSimdScalarArgs(SimdType simdType)
: simdType_(simdType), formalType_(SimdToCoercedScalarType(simdType))
{}
bool operator()(FunctionValidator& f, ParseNode* arg, unsigned argIndex, Type actualType) const
{
if (!(actualType <= formalType_)) {
// As a special case, accept doublelit arguments to float32x4 ops by
// re-emitting them as float32 constants.
if (simdType_ != SimdType::Float32x4 || !actualType.isDoubleLit()) {
return f.failf(arg, "%s is not a subtype of %s%s",
actualType.toChars(), formalType_.toChars(),
simdType_ == SimdType::Float32x4 ? " or doublelit" : "");
}
// We emitted a double literal and actually want a float32.
return f.encoder().writeOp(Op::F32DemoteF64);
}
return true;
}
};
class CheckSimdSelectArgs
{
Type formalType_;
Type maskType_;
public:
explicit CheckSimdSelectArgs(SimdType t) : formalType_(t), maskType_(GetBooleanSimdType(t)) {}
bool operator()(FunctionValidator& f, ParseNode* arg, unsigned argIndex, Type actualType) const
{
// The first argument is the boolean selector, the next two are the
// values to choose from.
Type wantedType = argIndex == 0 ? maskType_ : formalType_;
if (!(actualType <= wantedType)) {
return f.failf(arg, "%s is not a subtype of %s", actualType.toChars(),
wantedType.toChars());
}
return true;
}
};
class CheckSimdVectorScalarArgs
{
SimdType formalSimdType_;
public:
explicit CheckSimdVectorScalarArgs(SimdType t) : formalSimdType_(t) {}
bool operator()(FunctionValidator& f, ParseNode* arg, unsigned argIndex, Type actualType) const
{
MOZ_ASSERT(argIndex < 2);
if (argIndex == 0) {
// First argument is the vector
if (!(actualType <= Type(formalSimdType_))) {
return f.failf(arg, "%s is not a subtype of %s", actualType.toChars(),
Type(formalSimdType_).toChars());
}
return true;
}
// Second argument is the scalar
return CheckSimdScalarArgs(formalSimdType_)(f, arg, argIndex, actualType);
}
};
} // namespace
static bool
CheckSimdUnary(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type* type)
{
if (!CheckSimdCallArgs(f, call, 1, CheckArgIsSubtypeOf(opType)))
return false;
if (!f.writeSimdOp(opType, op))
return false;
*type = opType;
return true;
}
static bool
CheckSimdBinaryShift(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type *type)
{
if (!CheckSimdCallArgs(f, call, 2, CheckSimdVectorScalarArgs(opType)))
return false;
if (!f.writeSimdOp(opType, op))
return false;
*type = opType;
return true;
}
static bool
CheckSimdBinaryComp(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type *type)
{
if (!CheckSimdCallArgs(f, call, 2, CheckArgIsSubtypeOf(opType)))
return false;
if (!f.writeSimdOp(opType, op))
return false;
*type = GetBooleanSimdType(opType);
return true;
}
static bool
CheckSimdBinary(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type* type)
{
if (!CheckSimdCallArgs(f, call, 2, CheckArgIsSubtypeOf(opType)))
return false;
if (!f.writeSimdOp(opType, op))
return false;
*type = opType;
return true;
}
static bool
CheckSimdExtractLane(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
switch (opType) {
case SimdType::Int8x16:
case SimdType::Int16x8:
case SimdType::Int32x4: *type = Type::Signed; break;
case SimdType::Uint8x16:
case SimdType::Uint16x8:
case SimdType::Uint32x4: *type = Type::Unsigned; break;
case SimdType::Float32x4: *type = Type::Float; break;
case SimdType::Bool8x16:
case SimdType::Bool16x8:
case SimdType::Bool32x4: *type = Type::Int; break;
default: MOZ_CRASH("unhandled simd type");
}
unsigned numArgs = CallArgListLength(call);
if (numArgs != 2)
return f.failf(call, "expected 2 arguments to SIMD extract, got %u", numArgs);
ParseNode* arg = CallArgList(call);
// First argument is the vector
Type vecType;
if (!CheckExpr(f, arg, &vecType))
return false;
if (!(vecType <= Type(opType))) {
return f.failf(arg, "%s is not a subtype of %s", vecType.toChars(),
Type(opType).toChars());
}
arg = NextNode(arg);
// Second argument is the lane < vector length
uint32_t lane;
if (!IsLiteralOrConstInt(f, arg, &lane))
return f.failf(arg, "lane selector should be a constant integer literal");
if (lane >= GetSimdLanes(opType))
return f.failf(arg, "lane selector should be in bounds");
if (!f.writeSimdOp(opType, SimdOperation::Fn_extractLane))
return false;
if (!f.encoder().writeVarU32(lane))
return false;
return true;
}
static bool
CheckSimdReplaceLane(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
unsigned numArgs = CallArgListLength(call);
if (numArgs != 3)
return f.failf(call, "expected 2 arguments to SIMD replace, got %u", numArgs);
ParseNode* arg = CallArgList(call);
// First argument is the vector
Type vecType;
if (!CheckExpr(f, arg, &vecType))
return false;
if (!(vecType <= Type(opType))) {
return f.failf(arg, "%s is not a subtype of %s", vecType.toChars(),
Type(opType).toChars());
}
arg = NextNode(arg);
// Second argument is the lane < vector length
uint32_t lane;
if (!IsLiteralOrConstInt(f, arg, &lane))
return f.failf(arg, "lane selector should be a constant integer literal");
if (lane >= GetSimdLanes(opType))
return f.failf(arg, "lane selector should be in bounds");
arg = NextNode(arg);
// Third argument is the scalar
Type scalarType;
if (!CheckExpr(f, arg, &scalarType))
return false;
if (!(scalarType <= SimdToCoercedScalarType(opType))) {
if (opType == SimdType::Float32x4 && scalarType.isDoubleLit()) {
if (!f.encoder().writeOp(Op::F32DemoteF64))
return false;
} else {
return f.failf(arg, "%s is not the correct type to replace an element of %s",
scalarType.toChars(), vecType.toChars());
}
}
if (!f.writeSimdOp(opType, SimdOperation::Fn_replaceLane))
return false;
if (!f.encoder().writeVarU32(lane))
return false;
*type = opType;
return true;
}
typedef bool Bitcast;
namespace {
// Include CheckSimdCast in unnamed namespace to avoid MSVC name lookup bug (due to the use of Type).
static bool
CheckSimdCast(FunctionValidator& f, ParseNode* call, SimdType fromType, SimdType toType,
SimdOperation op, Type* type)
{
if (!CheckSimdCallArgs(f, call, 1, CheckArgIsSubtypeOf(fromType)))
return false;
if (!f.writeSimdOp(toType, op))
return false;
*type = toType;
return true;
}
} // namespace
static bool
CheckSimdShuffleSelectors(FunctionValidator& f, ParseNode* lane,
mozilla::Array<uint8_t, 16>& lanes, unsigned numLanes, unsigned maxLane)
{
for (unsigned i = 0; i < numLanes; i++, lane = NextNode(lane)) {
uint32_t u32;
if (!IsLiteralInt(f.m(), lane, &u32))
return f.failf(lane, "lane selector should be a constant integer literal");
if (u32 >= maxLane)
return f.failf(lane, "lane selector should be less than %u", maxLane);
lanes[i] = uint8_t(u32);
}
return true;
}
static bool
CheckSimdSwizzle(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
const unsigned numLanes = GetSimdLanes(opType);
unsigned numArgs = CallArgListLength(call);
if (numArgs != 1 + numLanes)
return f.failf(call, "expected %u arguments to SIMD swizzle, got %u", 1 + numLanes,
numArgs);
Type retType = opType;
ParseNode* vec = CallArgList(call);
Type vecType;
if (!CheckExpr(f, vec, &vecType))
return false;
if (!(vecType <= retType))
return f.failf(vec, "%s is not a subtype of %s", vecType.toChars(), retType.toChars());
if (!f.writeSimdOp(opType, SimdOperation::Fn_swizzle))
return false;
mozilla::Array<uint8_t, 16> lanes;
if (!CheckSimdShuffleSelectors(f, NextNode(vec), lanes, numLanes, numLanes))
return false;
for (unsigned i = 0; i < numLanes; i++) {
if (!f.encoder().writeFixedU8(lanes[i]))
return false;
}
*type = retType;
return true;
}
static bool
CheckSimdShuffle(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
const unsigned numLanes = GetSimdLanes(opType);
unsigned numArgs = CallArgListLength(call);
if (numArgs != 2 + numLanes)
return f.failf(call, "expected %u arguments to SIMD shuffle, got %u", 2 + numLanes,
numArgs);
Type retType = opType;
ParseNode* arg = CallArgList(call);
for (unsigned i = 0; i < 2; i++, arg = NextNode(arg)) {
Type type;
if (!CheckExpr(f, arg, &type))
return false;
if (!(type <= retType))
return f.failf(arg, "%s is not a subtype of %s", type.toChars(), retType.toChars());
}
if (!f.writeSimdOp(opType, SimdOperation::Fn_shuffle))
return false;
mozilla::Array<uint8_t, 16> lanes;
if (!CheckSimdShuffleSelectors(f, arg, lanes, numLanes, 2 * numLanes))
return false;
for (unsigned i = 0; i < numLanes; i++) {
if (!f.encoder().writeFixedU8(uint8_t(lanes[i])))
return false;
}
*type = retType;
return true;
}
static bool
CheckSimdLoadStoreArgs(FunctionValidator& f, ParseNode* call, Scalar::Type* viewType)
{
ParseNode* view = CallArgList(call);
if (!view->isKind(PNK_NAME))
return f.fail(view, "expected Uint8Array view as SIMD.*.load/store first argument");
ParseNode* indexExpr = NextNode(view);
if (!CheckAndPrepareArrayAccess(f, view, indexExpr, YesSimd, viewType))
return false;
if (*viewType != Scalar::Uint8)
return f.fail(view, "expected Uint8Array view as SIMD.*.load/store first argument");
return true;
}
static bool
CheckSimdLoad(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type* type)
{
unsigned numArgs = CallArgListLength(call);
if (numArgs != 2)
return f.failf(call, "expected 2 arguments to SIMD load, got %u", numArgs);
Scalar::Type viewType;
if (!CheckSimdLoadStoreArgs(f, call, &viewType))
return false;
if (!f.writeSimdOp(opType, op))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
*type = opType;
return true;
}
static bool
CheckSimdStore(FunctionValidator& f, ParseNode* call, SimdType opType, SimdOperation op,
Type* type)
{
unsigned numArgs = CallArgListLength(call);
if (numArgs != 3)
return f.failf(call, "expected 3 arguments to SIMD store, got %u", numArgs);
Scalar::Type viewType;
if (!CheckSimdLoadStoreArgs(f, call, &viewType))
return false;
Type retType = opType;
ParseNode* vecExpr = NextNode(NextNode(CallArgList(call)));
Type vecType;
if (!CheckExpr(f, vecExpr, &vecType))
return false;
if (!f.writeSimdOp(opType, op))
return false;
if (!WriteArrayAccessFlags(f, viewType))
return false;
if (!(vecType <= retType))
return f.failf(vecExpr, "%s is not a subtype of %s", vecType.toChars(), retType.toChars());
*type = vecType;
return true;
}
static bool
CheckSimdSelect(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
if (!CheckSimdCallArgs(f, call, 3, CheckSimdSelectArgs(opType)))
return false;
if (!f.writeSimdOp(opType, SimdOperation::Fn_select))
return false;
*type = opType;
return true;
}
static bool
CheckSimdAllTrue(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
if (!CheckSimdCallArgs(f, call, 1, CheckArgIsSubtypeOf(opType)))
return false;
if (!f.writeSimdOp(opType, SimdOperation::Fn_allTrue))
return false;
*type = Type::Int;
return true;
}
static bool
CheckSimdAnyTrue(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
if (!CheckSimdCallArgs(f, call, 1, CheckArgIsSubtypeOf(opType)))
return false;
if (!f.writeSimdOp(opType, SimdOperation::Fn_anyTrue))
return false;
*type = Type::Int;
return true;
}
static bool
CheckSimdCheck(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
Type coerceTo;
ParseNode* argNode;
if (!IsCoercionCall(f.m(), call, &coerceTo, &argNode))
return f.failf(call, "expected 1 argument in call to check");
return CheckCoercionArg(f, argNode, coerceTo, type);
}
static bool
CheckSimdSplat(FunctionValidator& f, ParseNode* call, SimdType opType, Type* type)
{
if (!CheckSimdCallArgs(f, call, 1, CheckSimdScalarArgs(opType)))
return false;
if (!f.writeSimdOp(opType, SimdOperation::Fn_splat))
return false;
*type = opType;
return true;
}
static bool
CheckSimdOperationCall(FunctionValidator& f, ParseNode* call, const ModuleValidator::Global* global,
Type* type)
{
f.setUsesSimd();
MOZ_ASSERT(global->isSimdOperation());
SimdType opType = global->simdOperationType();
switch (SimdOperation op = global->simdOperation()) {
case SimdOperation::Fn_check:
return CheckSimdCheck(f, call, opType, type);
#define _CASE(OP) case SimdOperation::Fn_##OP:
FOREACH_SHIFT_SIMD_OP(_CASE)
return CheckSimdBinaryShift(f, call, opType, op, type);
FOREACH_COMP_SIMD_OP(_CASE)
return CheckSimdBinaryComp(f, call, opType, op, type);
FOREACH_NUMERIC_SIMD_BINOP(_CASE)
FOREACH_FLOAT_SIMD_BINOP(_CASE)
FOREACH_BITWISE_SIMD_BINOP(_CASE)
FOREACH_SMINT_SIMD_BINOP(_CASE)
return CheckSimdBinary(f, call, opType, op, type);
#undef _CASE
case SimdOperation::Fn_extractLane:
return CheckSimdExtractLane(f, call, opType, type);
case SimdOperation::Fn_replaceLane:
return CheckSimdReplaceLane(f, call, opType, type);
case SimdOperation::Fn_fromInt8x16Bits:
return CheckSimdCast(f, call, SimdType::Int8x16, opType, op, type);
case SimdOperation::Fn_fromUint8x16Bits:
return CheckSimdCast(f, call, SimdType::Uint8x16, opType, op, type);
case SimdOperation::Fn_fromInt16x8Bits:
return CheckSimdCast(f, call, SimdType::Int16x8, opType, op, type);
case SimdOperation::Fn_fromUint16x8Bits:
return CheckSimdCast(f, call, SimdType::Uint16x8, opType, op, type);
case SimdOperation::Fn_fromInt32x4:
case SimdOperation::Fn_fromInt32x4Bits:
return CheckSimdCast(f, call, SimdType::Int32x4, opType, op, type);
case SimdOperation::Fn_fromUint32x4:
case SimdOperation::Fn_fromUint32x4Bits:
return CheckSimdCast(f, call, SimdType::Uint32x4, opType, op, type);
case SimdOperation::Fn_fromFloat32x4:
case SimdOperation::Fn_fromFloat32x4Bits:
return CheckSimdCast(f, call, SimdType::Float32x4, opType, op, type);
case SimdOperation::Fn_abs:
case SimdOperation::Fn_neg:
case SimdOperation::Fn_not:
case SimdOperation::Fn_sqrt:
case SimdOperation::Fn_reciprocalApproximation:
case SimdOperation::Fn_reciprocalSqrtApproximation:
return CheckSimdUnary(f, call, opType, op, type);
case SimdOperation::Fn_swizzle:
return CheckSimdSwizzle(f, call, opType, type);
case SimdOperation::Fn_shuffle:
return CheckSimdShuffle(f, call, opType, type);
case SimdOperation::Fn_load:
case SimdOperation::Fn_load1:
case SimdOperation::Fn_load2:
return CheckSimdLoad(f, call, opType, op, type);
case SimdOperation::Fn_store:
case SimdOperation::Fn_store1:
case SimdOperation::Fn_store2:
return CheckSimdStore(f, call, opType, op, type);
case SimdOperation::Fn_select:
return CheckSimdSelect(f, call, opType, type);
case SimdOperation::Fn_splat:
return CheckSimdSplat(f, call, opType, type);
case SimdOperation::Fn_allTrue:
return CheckSimdAllTrue(f, call, opType, type);
case SimdOperation::Fn_anyTrue:
return CheckSimdAnyTrue(f, call, opType, type);
case SimdOperation::Fn_load3:
case SimdOperation::Fn_store3:
return f.fail(call, "asm.js does not support 3-element SIMD loads or stores");
case SimdOperation::Constructor:
MOZ_CRASH("constructors are handled in CheckSimdCtorCall");
case SimdOperation::Fn_fromFloat64x2Bits:
MOZ_CRASH("NYI");
}
MOZ_CRASH("unexpected simd operation in CheckSimdOperationCall");
}
static bool
CheckSimdCtorCall(FunctionValidator& f, ParseNode* call, const ModuleValidator::Global* global,
Type* type)
{
f.setUsesSimd();
MOZ_ASSERT(call->isKind(PNK_CALL));
SimdType simdType = global->simdCtorType();
unsigned length = GetSimdLanes(simdType);
if (!CheckSimdCallArgs(f, call, length, CheckSimdScalarArgs(simdType)))
return false;
if (!f.writeSimdOp(simdType, SimdOperation::Constructor))
return false;
*type = simdType;
return true;
}
static bool
CheckUncoercedCall(FunctionValidator& f, ParseNode* expr, Type* type)
{
MOZ_ASSERT(expr->isKind(PNK_CALL));
const ModuleValidator::Global* global;
if (IsCallToGlobal(f.m(), expr, &global)) {
if (global->isMathFunction())
return CheckMathBuiltinCall(f, expr, global->mathBuiltinFunction(), type);
if (global->isAtomicsFunction())
return CheckAtomicsBuiltinCall(f, expr, global->atomicsBuiltinFunction(), type);
if (global->isSimdCtor())
return CheckSimdCtorCall(f, expr, global, type);
if (global->isSimdOperation())
return CheckSimdOperationCall(f, expr, global, type);
}
return f.fail(expr, "all function calls must either be calls to standard lib math functions, "
"standard atomic functions, standard SIMD constructors or operations, "
"ignored (via f(); or comma-expression), coerced to signed (via f()|0), "
"coerced to float (via fround(f())) or coerced to double (via +f())");
}
static bool
CoerceResult(FunctionValidator& f, ParseNode* expr, Type expected, Type actual,
Type* type)
{
MOZ_ASSERT(expected.isCanonical());
// At this point, the bytecode resembles this:
// | the thing we wanted to coerce | current position |>
switch (expected.which()) {
case Type::Void:
if (!actual.isVoid()) {
if (!f.encoder().writeOp(Op::Drop))
return false;
}
break;
case Type::Int:
if (!actual.isIntish())
return f.failf(expr, "%s is not a subtype of intish", actual.toChars());
break;
case Type::Float:
if (!CheckFloatCoercionArg(f, expr, actual))
return false;
break;
case Type::Double:
if (actual.isMaybeDouble()) {
// No conversion necessary.
} else if (actual.isMaybeFloat()) {
if (!f.encoder().writeOp(Op::F64PromoteF32))
return false;
} else if (actual.isSigned()) {
if (!f.encoder().writeOp(Op::F64ConvertSI32))
return false;
} else if (actual.isUnsigned()) {
if (!f.encoder().writeOp(Op::F64ConvertUI32))
return false;
} else {
return f.failf(expr, "%s is not a subtype of double?, float?, signed or unsigned", actual.toChars());
}
break;
default:
MOZ_ASSERT(expected.isSimd(), "Incomplete switch");
if (actual != expected)
return f.failf(expr, "got type %s, expected %s", actual.toChars(), expected.toChars());
break;
}
*type = Type::ret(expected);
return true;
}
static bool
CheckCoercedMathBuiltinCall(FunctionValidator& f, ParseNode* callNode, AsmJSMathBuiltinFunction func,
Type ret, Type* type)
{
Type actual;
if (!CheckMathBuiltinCall(f, callNode, func, &actual))
return false;
return CoerceResult(f, callNode, ret, actual, type);
}
static bool
CheckCoercedSimdCall(FunctionValidator& f, ParseNode* call, const ModuleValidator::Global* global,
Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
Type actual;
if (global->isSimdCtor()) {
if (!CheckSimdCtorCall(f, call, global, &actual))
return false;
MOZ_ASSERT(actual.isSimd());
} else {
MOZ_ASSERT(global->isSimdOperation());
if (!CheckSimdOperationCall(f, call, global, &actual))
return false;
}
return CoerceResult(f, call, ret, actual, type);
}
static bool
CheckCoercedAtomicsBuiltinCall(FunctionValidator& f, ParseNode* callNode,
AsmJSAtomicsBuiltinFunction func, Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
Type actual;
if (!CheckAtomicsBuiltinCall(f, callNode, func, &actual))
return false;
return CoerceResult(f, callNode, ret, actual, type);
}
static bool
CheckCoercedCall(FunctionValidator& f, ParseNode* call, Type ret, Type* type)
{
MOZ_ASSERT(ret.isCanonical());
JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
bool isSimd = false;
if (IsNumericLiteral(f.m(), call, &isSimd)) {
if (isSimd)
f.setUsesSimd();
NumLit lit = ExtractNumericLiteral(f.m(), call);
if (!f.writeConstExpr(lit))
return false;
return CoerceResult(f, call, ret, Type::lit(lit), type);
}
ParseNode* callee = CallCallee(call);
if (callee->isKind(PNK_ELEM))
return CheckFuncPtrCall(f, call, ret, type);
if (!callee->isKind(PNK_NAME))
return f.fail(callee, "unexpected callee expression type");
PropertyName* calleeName = callee->name();
if (const ModuleValidator::Global* global = f.lookupGlobal(calleeName)) {
switch (global->which()) {
case ModuleValidator::Global::FFI:
return CheckFFICall(f, call, global->ffiIndex(), ret, type);
case ModuleValidator::Global::MathBuiltinFunction:
return CheckCoercedMathBuiltinCall(f, call, global->mathBuiltinFunction(), ret, type);
case ModuleValidator::Global::AtomicsBuiltinFunction:
return CheckCoercedAtomicsBuiltinCall(f, call, global->atomicsBuiltinFunction(), ret, type);
case ModuleValidator::Global::ConstantLiteral:
case ModuleValidator::Global::ConstantImport:
case ModuleValidator::Global::Variable:
case ModuleValidator::Global::FuncPtrTable:
case ModuleValidator::Global::ArrayView:
case ModuleValidator::Global::ArrayViewCtor:
return f.failName(callee, "'%s' is not callable function", callee->name());
case ModuleValidator::Global::SimdCtor:
case ModuleValidator::Global::SimdOp:
return CheckCoercedSimdCall(f, call, global, ret, type);
case ModuleValidator::Global::Function:
break;
}
}
return CheckInternalCall(f, call, calleeName, ret, type);
}
static bool
CheckPos(FunctionValidator& f, ParseNode* pos, Type* type)
{
MOZ_ASSERT(pos->isKind(PNK_POS));
ParseNode* operand = UnaryKid(pos);
if (operand->isKind(PNK_CALL))
return CheckCoercedCall(f, operand, Type::Double, type);
Type actual;
if (!CheckExpr(f, operand, &actual))
return false;
return CoerceResult(f, operand, Type::Double, actual, type);
}
static bool
CheckNot(FunctionValidator& f, ParseNode* expr, Type* type)
{
MOZ_ASSERT(expr->isKind(PNK_NOT));
ParseNode* operand = UnaryKid(expr);
Type operandType;
if (!CheckExpr(f, operand, &operandType))
return false;
if (!operandType.isInt())
return f.failf(operand, "%s is not a subtype of int", operandType.toChars());
*type = Type::Int;
return f.encoder().writeOp(Op::I32Eqz);
}
static bool
CheckNeg(FunctionValidator& f, ParseNode* expr, Type* type)
{
MOZ_ASSERT(expr->isKind(PNK_NEG));
ParseNode* operand = UnaryKid(expr);
Type operandType;
if (!CheckExpr(f, operand, &operandType))
return false;
if (operandType.isInt()) {
*type = Type::Intish;
return f.encoder().writeOp(Op::I32Neg);
}
if (operandType.isMaybeDouble()) {
*type = Type::Double;
return f.encoder().writeOp(Op::F64Neg);
}
if (operandType.isMaybeFloat()) {
*type = Type::Floatish;
return f.encoder().writeOp(Op::F32Neg);
}
return f.failf(operand, "%s is not a subtype of int, float? or double?", operandType.toChars());
}
static bool
CheckCoerceToInt(FunctionValidator& f, ParseNode* expr, Type* type)
{
MOZ_ASSERT(expr->isKind(PNK_BITNOT));
ParseNode* operand = UnaryKid(expr);
Type operandType;
if (!CheckExpr(f, operand, &operandType))
return false;
if (operandType.isMaybeDouble() || operandType.isMaybeFloat()) {
*type = Type::Signed;
Op opcode = operandType.isMaybeDouble() ? Op::I32TruncSF64 : Op::I32TruncSF32;
return f.encoder().writeOp(opcode);
}
if (!operandType.isIntish())
return f.failf(operand, "%s is not a subtype of double?, float? or intish", operandType.toChars());
*type = Type::Signed;
return true;
}
static bool
CheckBitNot(FunctionValidator& f, ParseNode* neg, Type* type)
{
MOZ_ASSERT(neg->isKind(PNK_BITNOT));
ParseNode* operand = UnaryKid(neg);
if (operand->isKind(PNK_BITNOT))
return CheckCoerceToInt(f, operand, type);
Type operandType;
if (!CheckExpr(f, operand, &operandType))
return false;
if (!operandType.isIntish())
return f.failf(operand, "%s is not a subtype of intish", operandType.toChars());
if (!f.encoder().writeOp(Op::I32BitNot))
return false;
*type = Type::Signed;
return true;
}
static bool
CheckAsExprStatement(FunctionValidator& f, ParseNode* exprStmt);
static bool
CheckComma(FunctionValidator& f, ParseNode* comma, Type* type)
{
MOZ_ASSERT(comma->isKind(PNK_COMMA));
ParseNode* operands = ListHead(comma);
// The block depth isn't taken into account here, because a comma list can't
// contain breaks and continues and nested control flow structures.
if (!f.encoder().writeOp(Op::Block))
return false;
size_t typeAt;
if (!f.encoder().writePatchableFixedU7(&typeAt))
return false;
ParseNode* pn = operands;
for (; NextNode(pn); pn = NextNode(pn)) {
if (!CheckAsExprStatement(f, pn))
return false;
}
if (!CheckExpr(f, pn, type))
return false;
f.encoder().patchFixedU7(typeAt, uint8_t(type->toWasmBlockSignatureType()));
return f.encoder().writeOp(Op::End);
}
static bool
CheckConditional(FunctionValidator& f, ParseNode* ternary, Type* type)
{
MOZ_ASSERT(ternary->isKind(PNK_CONDITIONAL));
ParseNode* cond = TernaryKid1(ternary);
ParseNode* thenExpr = TernaryKid2(ternary);
ParseNode* elseExpr = TernaryKid3(ternary);
Type condType;
if (!CheckExpr(f, cond, &condType))
return false;
if (!condType.isInt())
return f.failf(cond, "%s is not a subtype of int", condType.toChars());
size_t typeAt;
if (!f.pushIf(&typeAt))
return false;
Type thenType;
if (!CheckExpr(f, thenExpr, &thenType))
return false;
if (!f.switchToElse())
return false;
Type elseType;
if (!CheckExpr(f, elseExpr, &elseType))
return false;
if (thenType.isInt() && elseType.isInt()) {
*type = Type::Int;
} else if (thenType.isDouble() && elseType.isDouble()) {
*type = Type::Double;
} else if (thenType.isFloat() && elseType.isFloat()) {
*type = Type::Float;
} else if (thenType.isSimd() && elseType == thenType) {
*type = thenType;
} else {
return f.failf(ternary, "then/else branches of conditional must both produce int, float, "
"double or SIMD types, current types are %s and %s",
thenType.toChars(), elseType.toChars());
}
if (!f.popIf(typeAt, type->toWasmBlockSignatureType()))
return false;
return true;
}
static bool
IsValidIntMultiplyConstant(ModuleValidator& m, ParseNode* expr)
{
if (!IsNumericLiteral(m, expr))
return false;
NumLit lit = ExtractNumericLiteral(m, expr);
switch (lit.which()) {
case NumLit::Fixnum:
case NumLit::NegativeInt:
if (abs(lit.toInt32()) < (1<<20))
return true;
return false;
case NumLit::BigUnsigned:
case NumLit::Double:
case NumLit::Float:
case NumLit::OutOfRangeInt:
case NumLit::Int8x16:
case NumLit::Uint8x16:
case NumLit::Int16x8:
case NumLit::Uint16x8:
case NumLit::Int32x4:
case NumLit::Uint32x4:
case NumLit::Float32x4:
case NumLit::Bool8x16:
case NumLit::Bool16x8:
case NumLit::Bool32x4:
return false;
}
MOZ_MAKE_COMPILER_ASSUME_IS_UNREACHABLE("Bad literal");
}
static bool
CheckMultiply(FunctionValidator& f, ParseNode* star, Type* type)
{
MOZ_ASSERT(star->isKind(PNK_STAR));
ParseNode* lhs = MultiplyLeft(star);
ParseNode* rhs = MultiplyRight(star);
Type lhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (lhsType.isInt() && rhsType.isInt()) {
if (!IsValidIntMultiplyConstant(f.m(), lhs) && !IsValidIntMultiplyConstant(f.m(), rhs))
return f.fail(star, "one arg to int multiply must be a small (-2^20, 2^20) int literal");
*type = Type::Intish;
return f.encoder().writeOp(Op::I32Mul);
}
if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
*type = Type::Double;
return f.encoder().writeOp(Op::F64Mul);
}
if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
*type = Type::Floatish;
return f.encoder().writeOp(Op::F32Mul);
}
return f.fail(star, "multiply operands must be both int, both double? or both float?");
}
static bool
CheckAddOrSub(FunctionValidator& f, ParseNode* expr, Type* type, unsigned* numAddOrSubOut = nullptr)
{
JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
MOZ_ASSERT(expr->isKind(PNK_ADD) || expr->isKind(PNK_SUB));
ParseNode* lhs = AddSubLeft(expr);
ParseNode* rhs = AddSubRight(expr);
Type lhsType, rhsType;
unsigned lhsNumAddOrSub, rhsNumAddOrSub;
if (lhs->isKind(PNK_ADD) || lhs->isKind(PNK_SUB)) {
if (!CheckAddOrSub(f, lhs, &lhsType, &lhsNumAddOrSub))
return false;
if (lhsType == Type::Intish)
lhsType = Type::Int;
} else {
if (!CheckExpr(f, lhs, &lhsType))
return false;
lhsNumAddOrSub = 0;
}
if (rhs->isKind(PNK_ADD) || rhs->isKind(PNK_SUB)) {
if (!CheckAddOrSub(f, rhs, &rhsType, &rhsNumAddOrSub))
return false;
if (rhsType == Type::Intish)
rhsType = Type::Int;
} else {
if (!CheckExpr(f, rhs, &rhsType))
return false;
rhsNumAddOrSub = 0;
}
unsigned numAddOrSub = lhsNumAddOrSub + rhsNumAddOrSub + 1;
if (numAddOrSub > (1<<20))
return f.fail(expr, "too many + or - without intervening coercion");
if (lhsType.isInt() && rhsType.isInt()) {
if (!f.encoder().writeOp(expr->isKind(PNK_ADD) ? Op::I32Add : Op::I32Sub))
return false;
*type = Type::Intish;
} else if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
if (!f.encoder().writeOp(expr->isKind(PNK_ADD) ? Op::F64Add : Op::F64Sub))
return false;
*type = Type::Double;
} else if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
if (!f.encoder().writeOp(expr->isKind(PNK_ADD) ? Op::F32Add : Op::F32Sub))
return false;
*type = Type::Floatish;
} else {
return f.failf(expr, "operands to + or - must both be int, float? or double?, got %s and %s",
lhsType.toChars(), rhsType.toChars());
}
if (numAddOrSubOut)
*numAddOrSubOut = numAddOrSub;
return true;
}
static bool
CheckDivOrMod(FunctionValidator& f, ParseNode* expr, Type* type)
{
MOZ_ASSERT(expr->isKind(PNK_DIV) || expr->isKind(PNK_MOD));
ParseNode* lhs = DivOrModLeft(expr);
ParseNode* rhs = DivOrModRight(expr);
Type lhsType, rhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (lhsType.isMaybeDouble() && rhsType.isMaybeDouble()) {
*type = Type::Double;
return f.encoder().writeOp(expr->isKind(PNK_DIV) ? Op::F64Div : Op::F64Mod);
}
if (lhsType.isMaybeFloat() && rhsType.isMaybeFloat()) {
*type = Type::Floatish;
if (expr->isKind(PNK_DIV))
return f.encoder().writeOp(Op::F32Div);
else
return f.fail(expr, "modulo cannot receive float arguments");
}
if (lhsType.isSigned() && rhsType.isSigned()) {
*type = Type::Intish;
return f.encoder().writeOp(expr->isKind(PNK_DIV) ? Op::I32DivS : Op::I32RemS);
}
if (lhsType.isUnsigned() && rhsType.isUnsigned()) {
*type = Type::Intish;
return f.encoder().writeOp(expr->isKind(PNK_DIV) ? Op::I32DivU : Op::I32RemU);
}
return f.failf(expr, "arguments to / or %% must both be double?, float?, signed, or unsigned; "
"%s and %s are given", lhsType.toChars(), rhsType.toChars());
}
static bool
CheckComparison(FunctionValidator& f, ParseNode* comp, Type* type)
{
MOZ_ASSERT(comp->isKind(PNK_LT) || comp->isKind(PNK_LE) || comp->isKind(PNK_GT) ||
comp->isKind(PNK_GE) || comp->isKind(PNK_EQ) || comp->isKind(PNK_NE));
ParseNode* lhs = ComparisonLeft(comp);
ParseNode* rhs = ComparisonRight(comp);
Type lhsType, rhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (!(lhsType.isSigned() && rhsType.isSigned()) &&
!(lhsType.isUnsigned() && rhsType.isUnsigned()) &&
!(lhsType.isDouble() && rhsType.isDouble()) &&
!(lhsType.isFloat() && rhsType.isFloat()))
{
return f.failf(comp, "arguments to a comparison must both be signed, unsigned, floats or doubles; "
"%s and %s are given", lhsType.toChars(), rhsType.toChars());
}
Op stmt;
if (lhsType.isSigned() && rhsType.isSigned()) {
switch (comp->getOp()) {
case JSOP_EQ: stmt = Op::I32Eq; break;
case JSOP_NE: stmt = Op::I32Ne; break;
case JSOP_LT: stmt = Op::I32LtS; break;
case JSOP_LE: stmt = Op::I32LeS; break;
case JSOP_GT: stmt = Op::I32GtS; break;
case JSOP_GE: stmt = Op::I32GeS; break;
default: MOZ_CRASH("unexpected comparison op");
}
} else if (lhsType.isUnsigned() && rhsType.isUnsigned()) {
switch (comp->getOp()) {
case JSOP_EQ: stmt = Op::I32Eq; break;
case JSOP_NE: stmt = Op::I32Ne; break;
case JSOP_LT: stmt = Op::I32LtU; break;
case JSOP_LE: stmt = Op::I32LeU; break;
case JSOP_GT: stmt = Op::I32GtU; break;
case JSOP_GE: stmt = Op::I32GeU; break;
default: MOZ_CRASH("unexpected comparison op");
}
} else if (lhsType.isDouble()) {
switch (comp->getOp()) {
case JSOP_EQ: stmt = Op::F64Eq; break;
case JSOP_NE: stmt = Op::F64Ne; break;
case JSOP_LT: stmt = Op::F64Lt; break;
case JSOP_LE: stmt = Op::F64Le; break;
case JSOP_GT: stmt = Op::F64Gt; break;
case JSOP_GE: stmt = Op::F64Ge; break;
default: MOZ_CRASH("unexpected comparison op");
}
} else if (lhsType.isFloat()) {
switch (comp->getOp()) {
case JSOP_EQ: stmt = Op::F32Eq; break;
case JSOP_NE: stmt = Op::F32Ne; break;
case JSOP_LT: stmt = Op::F32Lt; break;
case JSOP_LE: stmt = Op::F32Le; break;
case JSOP_GT: stmt = Op::F32Gt; break;
case JSOP_GE: stmt = Op::F32Ge; break;
default: MOZ_CRASH("unexpected comparison op");
}
} else {
MOZ_CRASH("unexpected type");
}
*type = Type::Int;
return f.encoder().writeOp(stmt);
}
static bool
CheckBitwise(FunctionValidator& f, ParseNode* bitwise, Type* type)
{
ParseNode* lhs = BitwiseLeft(bitwise);
ParseNode* rhs = BitwiseRight(bitwise);
int32_t identityElement;
bool onlyOnRight;
switch (bitwise->getKind()) {
case PNK_BITOR: identityElement = 0; onlyOnRight = false; *type = Type::Signed; break;
case PNK_BITAND: identityElement = -1; onlyOnRight = false; *type = Type::Signed; break;
case PNK_BITXOR: identityElement = 0; onlyOnRight = false; *type = Type::Signed; break;
case PNK_LSH: identityElement = 0; onlyOnRight = true; *type = Type::Signed; break;
case PNK_RSH: identityElement = 0; onlyOnRight = true; *type = Type::Signed; break;
case PNK_URSH: identityElement = 0; onlyOnRight = true; *type = Type::Unsigned; break;
default: MOZ_CRASH("not a bitwise op");
}
uint32_t i;
if (!onlyOnRight && IsLiteralInt(f.m(), lhs, &i) && i == uint32_t(identityElement)) {
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (!rhsType.isIntish())
return f.failf(bitwise, "%s is not a subtype of intish", rhsType.toChars());
return true;
}
if (IsLiteralInt(f.m(), rhs, &i) && i == uint32_t(identityElement)) {
if (bitwise->isKind(PNK_BITOR) && lhs->isKind(PNK_CALL))
return CheckCoercedCall(f, lhs, Type::Int, type);
Type lhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
if (!lhsType.isIntish())
return f.failf(bitwise, "%s is not a subtype of intish", lhsType.toChars());
return true;
}
Type lhsType;
if (!CheckExpr(f, lhs, &lhsType))
return false;
Type rhsType;
if (!CheckExpr(f, rhs, &rhsType))
return false;
if (!lhsType.isIntish())
return f.failf(lhs, "%s is not a subtype of intish", lhsType.toChars());
if (!rhsType.isIntish())
return f.failf(rhs, "%s is not a subtype of intish", rhsType.toChars());
switch (bitwise->getKind()) {
case PNK_BITOR: if (!f.encoder().writeOp(Op::I32Or)) return false; break;
case PNK_BITAND: if (!f.encoder().writeOp(Op::I32And)) return false; break;
case PNK_BITXOR: if (!f.encoder().writeOp(Op::I32Xor)) return false; break;
case PNK_LSH: if (!f.encoder().writeOp(Op::I32Shl)) return false; break;
case PNK_RSH: if (!f.encoder().writeOp(Op::I32ShrS)) return false; break;
case PNK_URSH: if (!f.encoder().writeOp(Op::I32ShrU)) return false; break;
default: MOZ_CRASH("not a bitwise op");
}
return true;
}
static bool
CheckExpr(FunctionValidator& f, ParseNode* expr, Type* type)
{
JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
bool isSimd = false;
if (IsNumericLiteral(f.m(), expr, &isSimd)) {
if (isSimd)
f.setUsesSimd();
return CheckNumericLiteral(f, expr, type);
}
switch (expr->getKind()) {
case PNK_NAME: return CheckVarRef(f, expr, type);
case PNK_ELEM: return CheckLoadArray(f, expr, type);
case PNK_ASSIGN: return CheckAssign(f, expr, type);
case PNK_POS: return CheckPos(f, expr, type);
case PNK_NOT: return CheckNot(f, expr, type);
case PNK_NEG: return CheckNeg(f, expr, type);
case PNK_BITNOT: return CheckBitNot(f, expr, type);
case PNK_COMMA: return CheckComma(f, expr, type);
case PNK_CONDITIONAL: return CheckConditional(f, expr, type);
case PNK_STAR: return CheckMultiply(f, expr, type);
case PNK_CALL: return CheckUncoercedCall(f, expr, type);
case PNK_ADD:
case PNK_SUB: return CheckAddOrSub(f, expr, type);
case PNK_DIV:
case PNK_MOD: return CheckDivOrMod(f, expr, type);
case PNK_LT:
case PNK_LE:
case PNK_GT:
case PNK_GE:
case PNK_EQ:
case PNK_NE: return CheckComparison(f, expr, type);
case PNK_BITOR:
case PNK_BITAND:
case PNK_BITXOR:
case PNK_LSH:
case PNK_RSH:
case PNK_URSH: return CheckBitwise(f, expr, type);
default:;
}
return f.fail(expr, "unsupported expression");
}
static bool
CheckStatement(FunctionValidator& f, ParseNode* stmt);
static bool
CheckAsExprStatement(FunctionValidator& f, ParseNode* expr)
{
if (expr->isKind(PNK_CALL)) {
Type ignored;
return CheckCoercedCall(f, expr, Type::Void, &ignored);
}
Type resultType;
if (!CheckExpr(f, expr, &resultType))
return false;
if (!resultType.isVoid()) {
if (!f.encoder().writeOp(Op::Drop))
return false;
}
return true;
}
static bool
CheckExprStatement(FunctionValidator& f, ParseNode* exprStmt)
{
MOZ_ASSERT(exprStmt->isKind(PNK_SEMI));
ParseNode* expr = UnaryKid(exprStmt);
if (!expr)
return true;
return CheckAsExprStatement(f, expr);
}
static bool
CheckLoopConditionOnEntry(FunctionValidator& f, ParseNode* cond)
{
uint32_t maybeLit;
if (IsLiteralInt(f.m(), cond, &maybeLit) && maybeLit)
return true;
Type condType;
if (!CheckExpr(f, cond, &condType))
return false;
if (!condType.isInt())
return f.failf(cond, "%s is not a subtype of int", condType.toChars());
// TODO change this to i32.eqz
// i32.eq 0 $f
if (!f.writeInt32Lit(0))
return false;
if (!f.encoder().writeOp(Op::I32Eq))
return false;
// brIf (i32.eq 0 $f) $out
if (!f.writeBreakIf())
return false;
return true;
}
static bool
CheckWhile(FunctionValidator& f, ParseNode* whileStmt, const NameVector* labels = nullptr)
{
MOZ_ASSERT(whileStmt->isKind(PNK_WHILE));
ParseNode* cond = BinaryLeft(whileStmt);
ParseNode* body = BinaryRight(whileStmt);
// A while loop `while(#cond) #body` is equivalent to:
// (block $after_loop
// (loop $top
// (brIf $after_loop (i32.eq 0 #cond))
// #body
// (br $top)
// )
// )
if (labels && !f.addLabels(*labels, 0, 1))
return false;
if (!f.pushLoop())
return false;
if (!CheckLoopConditionOnEntry(f, cond))
return false;
if (!CheckStatement(f, body))
return false;
if (!f.writeContinue())
return false;
if (!f.popLoop())
return false;
if (labels)
f.removeLabels(*labels);
return true;
}
static bool
CheckFor(FunctionValidator& f, ParseNode* forStmt, const NameVector* labels = nullptr)
{
MOZ_ASSERT(forStmt->isKind(PNK_FOR));
ParseNode* forHead = BinaryLeft(forStmt);
ParseNode* body = BinaryRight(forStmt);
if (!forHead->isKind(PNK_FORHEAD))
return f.fail(forHead, "unsupported for-loop statement");
ParseNode* maybeInit = TernaryKid1(forHead);
ParseNode* maybeCond = TernaryKid2(forHead);
ParseNode* maybeInc = TernaryKid3(forHead);
// A for-loop `for (#init; #cond; #inc) #body` is equivalent to:
// (block // depth X
// (#init)
// (block $after_loop // depth X+1 (block)
// (loop $loop_top // depth X+2 (loop)
// (brIf $after (eq 0 #cond))
// (block $after_body #body) // depth X+3
// #inc
// (br $loop_top)
// )
// )
// )
// A break in the body should break out to $after_loop, i.e. depth + 1.
// A continue in the body should break out to $after_body, i.e. depth + 3.
if (labels && !f.addLabels(*labels, 1, 3))
return false;
if (!f.pushUnbreakableBlock())
return false;
if (maybeInit && !CheckAsExprStatement(f, maybeInit))
return false;
{
if (!f.pushLoop())
return false;
if (maybeCond && !CheckLoopConditionOnEntry(f, maybeCond))
return false;
{
// Continuing in the body should just break out to the increment.
if (!f.pushContinuableBlock())
return false;
if (!CheckStatement(f, body))
return false;
if (!f.popContinuableBlock())
return false;
}
if (maybeInc && !CheckAsExprStatement(f, maybeInc))
return false;
if (!f.writeContinue())
return false;
if (!f.popLoop())
return false;
}
if (!f.popUnbreakableBlock())
return false;
if (labels)
f.removeLabels(*labels);
return true;
}
static bool
CheckDoWhile(FunctionValidator& f, ParseNode* whileStmt, const NameVector* labels = nullptr)
{
MOZ_ASSERT(whileStmt->isKind(PNK_DOWHILE));
ParseNode* body = BinaryLeft(whileStmt);
ParseNode* cond = BinaryRight(whileStmt);
// A do-while loop `do { #body } while (#cond)` is equivalent to:
// (block $after_loop // depth X
// (loop $top // depth X+1
// (block #body) // depth X+2
// (brIf #cond $top)
// )
// )
// A break should break out of the entire loop, i.e. at depth 0.
// A continue should break out to the condition, i.e. at depth 2.
if (labels && !f.addLabels(*labels, 0, 2))
return false;
if (!f.pushLoop())
return false;
{
// An unlabeled continue in the body should break out to the condition.
if (!f.pushContinuableBlock())
return false;
if (!CheckStatement(f, body))
return false;
if (!f.popContinuableBlock())
return false;
}
Type condType;
if (!CheckExpr(f, cond, &condType))
return false;
if (!condType.isInt())
return f.failf(cond, "%s is not a subtype of int", condType.toChars());
if (!f.writeContinueIf())
return false;
if (!f.popLoop())
return false;
if (labels)
f.removeLabels(*labels);
return true;
}
static bool CheckStatementList(FunctionValidator& f, ParseNode*, const NameVector* = nullptr);
static bool
CheckLabel(FunctionValidator& f, ParseNode* labeledStmt)
{
MOZ_ASSERT(labeledStmt->isKind(PNK_LABEL));
NameVector labels;
ParseNode* innermost = labeledStmt;
do {
if (!labels.append(LabeledStatementLabel(innermost)))
return false;
innermost = LabeledStatementStatement(innermost);
} while (innermost->getKind() == PNK_LABEL);
switch (innermost->getKind()) {
case PNK_FOR:
return CheckFor(f, innermost, &labels);
case PNK_DOWHILE:
return CheckDoWhile(f, innermost, &labels);
case PNK_WHILE:
return CheckWhile(f, innermost, &labels);
case PNK_STATEMENTLIST:
return CheckStatementList(f, innermost, &labels);
default:
break;
}
if (!f.pushUnbreakableBlock(&labels))
return false;
if (!CheckStatement(f, innermost))
return false;
if (!f.popUnbreakableBlock(&labels))
return false;
return true;
}
static bool
CheckIf(FunctionValidator& f, ParseNode* ifStmt)
{
uint32_t numIfEnd = 1;
recurse:
MOZ_ASSERT(ifStmt->isKind(PNK_IF));
ParseNode* cond = TernaryKid1(ifStmt);
ParseNode* thenStmt = TernaryKid2(ifStmt);
ParseNode* elseStmt = TernaryKid3(ifStmt);
Type condType;
if (!CheckExpr(f, cond, &condType))
return false;
if (!condType.isInt())
return f.failf(cond, "%s is not a subtype of int", condType.toChars());
size_t typeAt;
if (!f.pushIf(&typeAt))
return false;
f.setIfType(typeAt, ExprType::Void);
if (!CheckStatement(f, thenStmt))
return false;
if (elseStmt) {
if (!f.switchToElse())
return false;
if (elseStmt->isKind(PNK_IF)) {
ifStmt = elseStmt;
if (numIfEnd++ == UINT32_MAX)
return false;
goto recurse;
}
if (!CheckStatement(f, elseStmt))
return false;
}
for (uint32_t i = 0; i != numIfEnd; ++i) {
if (!f.popIf())
return false;
}
return true;
}
static bool
CheckCaseExpr(FunctionValidator& f, ParseNode* caseExpr, int32_t* value)
{
if (!IsNumericLiteral(f.m(), caseExpr))
return f.fail(caseExpr, "switch case expression must be an integer literal");
NumLit lit = ExtractNumericLiteral(f.m(), caseExpr);
switch (lit.which()) {
case NumLit::Fixnum:
case NumLit::NegativeInt:
*value = lit.toInt32();
break;
case NumLit::OutOfRangeInt:
case NumLit::BigUnsigned:
return f.fail(caseExpr, "switch case expression out of integer range");
case NumLit::Double:
case NumLit::Float:
case NumLit::Int8x16:
case NumLit::Uint8x16:
case NumLit::Int16x8:
case NumLit::Uint16x8:
case NumLit::Int32x4:
case NumLit::Uint32x4:
case NumLit::Float32x4:
case NumLit::Bool8x16:
case NumLit::Bool16x8:
case NumLit::Bool32x4:
return f.fail(caseExpr, "switch case expression must be an integer literal");
}
return true;
}
static bool
CheckDefaultAtEnd(FunctionValidator& f, ParseNode* stmt)
{
for (; stmt; stmt = NextNode(stmt)) {
if (IsDefaultCase(stmt) && NextNode(stmt) != nullptr)
return f.fail(stmt, "default label must be at the end");
}
return true;
}
static bool
CheckSwitchRange(FunctionValidator& f, ParseNode* stmt, int32_t* low, int32_t* high,
uint32_t* tableLength)
{
if (IsDefaultCase(stmt)) {
*low = 0;
*high = -1;
*tableLength = 0;
return true;
}
int32_t i = 0;
if (!CheckCaseExpr(f, CaseExpr(stmt), &i))
return false;
*low = *high = i;
ParseNode* initialStmt = stmt;
for (stmt = NextNode(stmt); stmt && !IsDefaultCase(stmt); stmt = NextNode(stmt)) {
int32_t i = 0;
if (!CheckCaseExpr(f, CaseExpr(stmt), &i))
return false;
*low = Min(*low, i);
*high = Max(*high, i);
}
int64_t i64 = (int64_t(*high) - int64_t(*low)) + 1;
if (i64 > MaxBrTableElems)
return f.fail(initialStmt, "all switch statements generate tables; this table would be too big");
*tableLength = uint32_t(i64);
return true;
}
static bool
CheckSwitchExpr(FunctionValidator& f, ParseNode* switchExpr)
{
Type exprType;
if (!CheckExpr(f, switchExpr, &exprType))
return false;
if (!exprType.isSigned())
return f.failf(switchExpr, "%s is not a subtype of signed", exprType.toChars());
return true;
}
// A switch will be constructed as:
// - the default block wrapping all the other blocks, to be able to break
// out of the switch with an unlabeled break statement. It has two statements
// (an inner block and the default expr). asm.js rules require default to be at
// the end, so the default block always encloses all the cases blocks.
// - one block per case between low and high; undefined cases just jump to the
// default case. Each of these blocks contain two statements: the next case's
// block and the possibly empty statement list comprising the case body. The
// last block pushed is the first case so the (relative) branch target therefore
// matches the sequential order of cases.
// - one block for the br_table, so that the first break goes to the first
// case's block.
static bool
CheckSwitch(FunctionValidator& f, ParseNode* switchStmt)
{
MOZ_ASSERT(switchStmt->isKind(PNK_SWITCH));
ParseNode* switchExpr = BinaryLeft(switchStmt);
ParseNode* switchBody = BinaryRight(switchStmt);
if (switchBody->isKind(PNK_LEXICALSCOPE)) {
if (!switchBody->isEmptyScope())
return f.fail(switchBody, "switch body may not contain lexical declarations");
switchBody = switchBody->scopeBody();
}
ParseNode* stmt = ListHead(switchBody);
if (!stmt) {
if (!CheckSwitchExpr(f, switchExpr))
return false;
if (!f.encoder().writeOp(Op::Drop))
return false;
return true;
}
if (!CheckDefaultAtEnd(f, stmt))
return false;
int32_t low = 0, high = 0;
uint32_t tableLength = 0;
if (!CheckSwitchRange(f, stmt, &low, &high, &tableLength))
return false;
static const uint32_t CASE_NOT_DEFINED = UINT32_MAX;
Uint32Vector caseDepths;
if (!caseDepths.appendN(CASE_NOT_DEFINED, tableLength))
return false;
uint32_t numCases = 0;
for (ParseNode* s = stmt; s && !IsDefaultCase(s); s = NextNode(s)) {
int32_t caseValue = ExtractNumericLiteral(f.m(), CaseExpr(s)).toInt32();
MOZ_ASSERT(caseValue >= low);
unsigned i = caseValue - low;
if (caseDepths[i] != CASE_NOT_DEFINED)
return f.fail(s, "no duplicate case labels");
MOZ_ASSERT(numCases != CASE_NOT_DEFINED);
caseDepths[i] = numCases++;
}
// Open the wrapping breakable default block.
if (!f.pushBreakableBlock())
return false;
// Open all the case blocks.
for (uint32_t i = 0; i < numCases; i++) {
if (!f.pushUnbreakableBlock())
return false;
}
// Open the br_table block.
if (!f.pushUnbreakableBlock())
return false;
// The default block is the last one.
uint32_t defaultDepth = numCases;
// Subtract lowest case value, so that all the cases start from 0.
if (low) {
if (!CheckSwitchExpr(f, switchExpr))
return false;
if (!f.writeInt32Lit(low))
return false;
if (!f.encoder().writeOp(Op::I32Sub))
return false;
} else {
if (!CheckSwitchExpr(f, switchExpr))
return false;
}
// Start the br_table block.
if (!f.encoder().writeOp(Op::BrTable))
return false;
// Write the number of cases (tableLength - 1 + 1 (default)).
// Write the number of cases (tableLength - 1 + 1 (default)).
if (!f.encoder().writeVarU32(tableLength))
return false;
// Each case value describes the relative depth to the actual block. When
// a case is not explicitly defined, it goes to the default.
for (size_t i = 0; i < tableLength; i++) {
uint32_t target = caseDepths[i] == CASE_NOT_DEFINED ? defaultDepth : caseDepths[i];
if (!f.encoder().writeVarU32(target))
return false;
}
// Write the default depth.
if (!f.encoder().writeVarU32(defaultDepth))
return false;
// Our br_table is done. Close its block, write the cases down in order.
if (!f.popUnbreakableBlock())
return false;
for (; stmt && !IsDefaultCase(stmt); stmt = NextNode(stmt)) {
if (!CheckStatement(f, CaseBody(stmt)))
return false;
if (!f.popUnbreakableBlock())
return false;
}
// Write the default block.
if (stmt && IsDefaultCase(stmt)) {
if (!CheckStatement(f, CaseBody(stmt)))
return false;
}
// Close the wrapping block.
if (!f.popBreakableBlock())
return false;
return true;
}
static bool
CheckReturnType(FunctionValidator& f, ParseNode* usepn, Type ret)
{
if (!f.hasAlreadyReturned()) {
f.setReturnedType(ret.canonicalToExprType());
return true;
}
if (f.returnedType() != ret.canonicalToExprType()) {
return f.failf(usepn, "%s incompatible with previous return of type %s",
Type::ret(ret).toChars(), ToCString(f.returnedType()));
}
return true;
}
static bool
CheckReturn(FunctionValidator& f, ParseNode* returnStmt)
{
ParseNode* expr = ReturnExpr(returnStmt);
if (!expr) {
if (!CheckReturnType(f, returnStmt, Type::Void))
return false;
} else {
Type type;
if (!CheckExpr(f, expr, &type))
return false;
if (!type.isReturnType())
return f.failf(expr, "%s is not a valid return type", type.toChars());
if (!CheckReturnType(f, expr, Type::canonicalize(type)))
return false;
}
if (!f.encoder().writeOp(Op::Return))
return false;
return true;
}
static bool
CheckStatementList(FunctionValidator& f, ParseNode* stmtList, const NameVector* labels /*= nullptr */)
{
MOZ_ASSERT(stmtList->isKind(PNK_STATEMENTLIST));
if (!f.pushUnbreakableBlock(labels))
return false;
for (ParseNode* stmt = ListHead(stmtList); stmt; stmt = NextNode(stmt)) {
if (!CheckStatement(f, stmt))
return false;
}
if (!f.popUnbreakableBlock(labels))
return false;
return true;
}
static bool
CheckLexicalScope(FunctionValidator& f, ParseNode* lexicalScope)
{
MOZ_ASSERT(lexicalScope->isKind(PNK_LEXICALSCOPE));
if (!lexicalScope->isEmptyScope())
return f.fail(lexicalScope, "cannot have 'let' or 'const' declarations");
return CheckStatement(f, lexicalScope->scopeBody());
}
static bool
CheckBreakOrContinue(FunctionValidator& f, bool isBreak, ParseNode* stmt)
{
if (PropertyName* maybeLabel = LoopControlMaybeLabel(stmt))
return f.writeLabeledBreakOrContinue(maybeLabel, isBreak);
return f.writeUnlabeledBreakOrContinue(isBreak);
}
static bool
CheckStatement(FunctionValidator& f, ParseNode* stmt)
{
JS_CHECK_RECURSION_DONT_REPORT(f.cx(), return f.m().failOverRecursed());
switch (stmt->getKind()) {
case PNK_SEMI: return CheckExprStatement(f, stmt);
case PNK_WHILE: return CheckWhile(f, stmt);
case PNK_FOR: return CheckFor(f, stmt);
case PNK_DOWHILE: return CheckDoWhile(f, stmt);
case PNK_LABEL: return CheckLabel(f, stmt);
case PNK_IF: return CheckIf(f, stmt);
case PNK_SWITCH: return CheckSwitch(f, stmt);
case PNK_RETURN: return CheckReturn(f, stmt);
case PNK_STATEMENTLIST: return CheckStatementList(f, stmt);
case PNK_BREAK: return CheckBreakOrContinue(f, true, stmt);
case PNK_CONTINUE: return CheckBreakOrContinue(f, false, stmt);
case PNK_LEXICALSCOPE: return CheckLexicalScope(f, stmt);
default:;
}
return f.fail(stmt, "unexpected statement kind");
}
static bool
ParseFunction(ModuleValidator& m, ParseNode** fnOut, unsigned* line)
{
TokenStream& tokenStream = m.tokenStream();
tokenStream.consumeKnownToken(TOK_FUNCTION, TokenStream::Operand);
uint32_t preludeStart = tokenStream.currentToken().pos.begin;
*line = tokenStream.srcCoords.lineNum(tokenStream.currentToken().pos.end);
TokenKind tk;
if (!tokenStream.getToken(&tk, TokenStream::Operand))
return false;
if (tk != TOK_NAME && tk != TOK_YIELD)
return false; // The regular parser will throw a SyntaxError, no need to m.fail.
RootedPropertyName name(m.cx(), m.parser().bindingIdentifier(YieldIsName));
if (!name)
return false;
ParseNode* fn = m.parser().handler.newFunctionStatement();
if (!fn)
return false;
RootedFunction& fun = m.dummyFunction();
fun->setAtom(name);
fun->setArgCount(0);
ParseContext* outerpc = m.parser().pc;
Directives directives(outerpc);
FunctionBox* funbox = m.parser().newFunctionBox(fn, fun, preludeStart, directives, NotGenerator,
SyncFunction, /* tryAnnexB = */ false);
if (!funbox)
return false;
funbox->initWithEnclosingParseContext(outerpc, frontend::Statement);
Directives newDirectives = directives;
ParseContext funpc(&m.parser(), funbox, &newDirectives);
if (!funpc.init())
return false;
if (!m.parser().functionFormalParametersAndBody(InAllowed, YieldIsName, fn, Statement)) {
if (tokenStream.hadError() || directives == newDirectives)
return false;
return m.fail(fn, "encountered new directive in function");
}
MOZ_ASSERT(!tokenStream.hadError());
MOZ_ASSERT(directives == newDirectives);
*fnOut = fn;
return true;
}
static bool
CheckFunction(ModuleValidator& m)
{
// asm.js modules can be quite large when represented as parse trees so pop
// the backing LifoAlloc after parsing/compiling each function.
AsmJSParser::Mark mark = m.parser().mark();
ParseNode* fn = nullptr;
unsigned line = 0;
if (!ParseFunction(m, &fn, &line))
return false;
if (!CheckFunctionHead(m, fn))
return false;
FunctionValidator f(m, fn);
if (!f.init(FunctionName(fn), line))
return m.fail(fn, "internal compiler failure (probably out of memory)");
ParseNode* stmtIter = ListHead(FunctionStatementList(fn));
if (!CheckProcessingDirectives(m, &stmtIter))
return false;
ValTypeVector args;
if (!CheckArguments(f, &stmtIter, &args))
return false;
if (!CheckVariables(f, &stmtIter))
return false;
ParseNode* lastNonEmptyStmt = nullptr;
for (; stmtIter; stmtIter = NextNonEmptyStatement(stmtIter)) {
lastNonEmptyStmt = stmtIter;
if (!CheckStatement(f, stmtIter))
return false;
}
if (!CheckFinalReturn(f, lastNonEmptyStmt))
return false;
ModuleValidator::Func* func = nullptr;
if (!CheckFunctionSignature(m, fn, Sig(Move(args), f.returnedType()), FunctionName(fn), &func))
return false;
if (func->defined())
return m.failName(fn, "function '%s' already defined", FunctionName(fn));
func->define(fn);
if (!f.finish(func->index()))
return m.fail(fn, "internal compiler failure (probably out of memory)");
// Release the parser's lifo memory only after the last use of a parse node.
m.parser().release(mark);
return true;
}
static bool
CheckAllFunctionsDefined(ModuleValidator& m)
{
for (unsigned i = 0; i < m.numFunctions(); i++) {
ModuleValidator::Func& f = m.function(i);
if (!f.defined())
return m.failNameOffset(f.firstUse(), "missing definition of function %s", f.name());
}
return true;
}
static bool
CheckFunctions(ModuleValidator& m)
{
while (true) {
TokenKind tk;
if (!PeekToken(m.parser(), &tk))
return false;
if (tk != TOK_FUNCTION)
break;
if (!CheckFunction(m))
return false;
}
return CheckAllFunctionsDefined(m);
}
static bool
CheckFuncPtrTable(ModuleValidator& m, ParseNode* var)
{
if (!var->isKind(PNK_NAME))
return m.fail(var, "function-pointer table name is not a plain name");
ParseNode* arrayLiteral = MaybeInitializer(var);
if (!arrayLiteral || !arrayLiteral->isKind(PNK_ARRAY))
return m.fail(var, "function-pointer table's initializer must be an array literal");
unsigned length = ListLength(arrayLiteral);
if (!IsPowerOfTwo(length))
return m.failf(arrayLiteral, "function-pointer table length must be a power of 2 (is %u)", length);
unsigned mask = length - 1;
Uint32Vector elemFuncIndices;
const Sig* sig = nullptr;
for (ParseNode* elem = ListHead(arrayLiteral); elem; elem = NextNode(elem)) {
if (!elem->isKind(PNK_NAME))
return m.fail(elem, "function-pointer table's elements must be names of functions");
PropertyName* funcName = elem->name();
const ModuleValidator::Func* func = m.lookupFunction(funcName);
if (!func)
return m.fail(elem, "function-pointer table's elements must be names of functions");
const Sig& funcSig = m.mg().funcSig(func->index());
if (sig) {
if (*sig != funcSig)
return m.fail(elem, "all functions in table must have same signature");
} else {
sig = &funcSig;
}
if (!elemFuncIndices.append(func->index()))
return false;
}
Sig copy;
if (!copy.clone(*sig))
return false;
uint32_t tableIndex;
if (!CheckFuncPtrTableAgainstExisting(m, var, var->name(), Move(copy), mask, &tableIndex))
return false;
if (!m.defineFuncPtrTable(tableIndex, Move(elemFuncIndices)))
return m.fail(var, "duplicate function-pointer definition");
return true;
}
static bool
CheckFuncPtrTables(ModuleValidator& m)
{
while (true) {
ParseNode* varStmt;
if (!ParseVarOrConstStatement(m.parser(), &varStmt))
return false;
if (!varStmt)
break;
for (ParseNode* var = VarListHead(varStmt); var; var = NextNode(var)) {
if (!CheckFuncPtrTable(m, var))
return false;
}
}
for (unsigned i = 0; i < m.numFuncPtrTables(); i++) {
ModuleValidator::FuncPtrTable& funcPtrTable = m.funcPtrTable(i);
if (!funcPtrTable.defined()) {
return m.failNameOffset(funcPtrTable.firstUse(),
"function-pointer table %s wasn't defined",
funcPtrTable.name());
}
}
return true;
}
static bool
CheckModuleExportFunction(ModuleValidator& m, ParseNode* pn, PropertyName* maybeFieldName = nullptr)
{
if (!pn->isKind(PNK_NAME))
return m.fail(pn, "expected name of exported function");
PropertyName* funcName = pn->name();
const ModuleValidator::Func* func = m.lookupFunction(funcName);
if (!func)
return m.failName(pn, "function '%s' not found", funcName);
return m.addExportField(pn, *func, maybeFieldName);
}
static bool
CheckModuleExportObject(ModuleValidator& m, ParseNode* object)
{
MOZ_ASSERT(object->isKind(PNK_OBJECT));
for (ParseNode* pn = ListHead(object); pn; pn = NextNode(pn)) {
if (!IsNormalObjectField(m.cx(), pn))
return m.fail(pn, "only normal object properties may be used in the export object literal");
PropertyName* fieldName = ObjectNormalFieldName(m.cx(), pn);
ParseNode* initNode = ObjectNormalFieldInitializer(m.cx(), pn);
if (!initNode->isKind(PNK_NAME))
return m.fail(initNode, "initializer of exported object literal must be name of function");
if (!CheckModuleExportFunction(m, initNode, fieldName))
return false;
}
return true;
}
static bool
CheckModuleReturn(ModuleValidator& m)
{
TokenKind tk;
if (!GetToken(m.parser(), &tk))
return false;
TokenStream& ts = m.parser().tokenStream;
if (tk != TOK_RETURN) {
return m.failCurrentOffset((tk == TOK_RC || tk == TOK_EOF)
? "expecting return statement"
: "invalid asm.js. statement");
}
ts.ungetToken();
ParseNode* returnStmt = m.parser().statementListItem(YieldIsName);
if (!returnStmt)
return false;
ParseNode* returnExpr = ReturnExpr(returnStmt);
if (!returnExpr)
return m.fail(returnStmt, "export statement must return something");
if (returnExpr->isKind(PNK_OBJECT)) {
if (!CheckModuleExportObject(m, returnExpr))
return false;
} else {
if (!CheckModuleExportFunction(m, returnExpr))
return false;
}
return true;
}
static bool
CheckModuleEnd(ModuleValidator &m)
{
TokenKind tk;
if (!GetToken(m.parser(), &tk))
return false;
if (tk != TOK_EOF && tk != TOK_RC)
return m.failCurrentOffset("top-level export (return) must be the last statement");
m.parser().tokenStream.ungetToken();
return true;
}
static SharedModule
CheckModule(ExclusiveContext* cx, AsmJSParser& parser, ParseNode* stmtList, unsigned* time)
{
int64_t before = PRMJ_Now();
ParseNode* moduleFunctionNode = parser.pc->functionBox()->functionNode;
MOZ_ASSERT(moduleFunctionNode);
ModuleValidator m(cx, parser, moduleFunctionNode);
if (!m.init())
return nullptr;
if (!CheckFunctionHead(m, moduleFunctionNode))
return nullptr;
if (!CheckModuleArguments(m, moduleFunctionNode))
return nullptr;
if (!CheckPrecedingStatements(m, stmtList))
return nullptr;
if (!CheckModuleProcessingDirectives(m))
return nullptr;
if (!CheckModuleGlobals(m))
return nullptr;
if (!m.startFunctionBodies())
return nullptr;
if (!CheckFunctions(m))
return nullptr;
if (!m.finishFunctionBodies())
return nullptr;
if (!CheckFuncPtrTables(m))
return nullptr;
if (!CheckModuleReturn(m))
return nullptr;
if (!CheckModuleEnd(m))
return nullptr;
SharedModule module = m.finish();
if (!module)
return nullptr;
*time = (PRMJ_Now() - before) / PRMJ_USEC_PER_MSEC;
return module;
}
/*****************************************************************************/
// Link-time validation
static bool
LinkFail(JSContext* cx, const char* str)
{
JS_ReportErrorFlagsAndNumberASCII(cx, JSREPORT_WARNING, GetErrorMessage, nullptr,
JSMSG_USE_ASM_LINK_FAIL, str);
return false;
}
static bool
IsMaybeWrappedScriptedProxy(JSObject* obj)
{
JSObject* unwrapped = UncheckedUnwrap(obj);
return unwrapped && IsScriptedProxy(unwrapped);
}
static bool
GetDataProperty(JSContext* cx, HandleValue objVal, HandleAtom field, MutableHandleValue v)
{
if (!objVal.isObject())
return LinkFail(cx, "accessing property of non-object");
RootedObject obj(cx, &objVal.toObject());
if (IsMaybeWrappedScriptedProxy(obj))
return LinkFail(cx, "accessing property of a Proxy");
Rooted<PropertyDescriptor> desc(cx);
RootedId id(cx, AtomToId(field));
if (!GetPropertyDescriptor(cx, obj, id, &desc))
return false;
if (!desc.object())
return LinkFail(cx, "property not present on object");
if (!desc.isDataDescriptor())
return LinkFail(cx, "property is not a data property");
v.set(desc.value());
return true;
}
static bool
GetDataProperty(JSContext* cx, HandleValue objVal, const char* fieldChars, MutableHandleValue v)
{
RootedAtom field(cx, AtomizeUTF8Chars(cx, fieldChars, strlen(fieldChars)));
if (!field)
return false;
return GetDataProperty(cx, objVal, field, v);
}
static bool
GetDataProperty(JSContext* cx, HandleValue objVal, ImmutablePropertyNamePtr field, MutableHandleValue v)
{
// Help the conversion along for all the cx->names().* users.
HandlePropertyName fieldHandle = field;
return GetDataProperty(cx, objVal, fieldHandle, v);
}
static bool
HasPureCoercion(JSContext* cx, HandleValue v)
{
// Unsigned SIMD types are not allowed in function signatures.
if (IsVectorObject<Int32x4>(v) || IsVectorObject<Float32x4>(v) || IsVectorObject<Bool32x4>(v))
return true;
// Ideally, we'd reject all non-SIMD non-primitives, but Emscripten has a
// bug that generates code that passes functions for some imports. To avoid
// breaking all the code that contains this bug, we make an exception for
// functions that don't have user-defined valueOf or toString, for their
// coercions are not observable and coercion via ToNumber/ToInt32
// definitely produces NaN/0. We should remove this special case later once
// most apps have been built with newer Emscripten.
jsid toString = NameToId(cx->names().toString);
if (v.toObject().is<JSFunction>() &&
HasObjectValueOf(&v.toObject(), cx) &&
ClassMethodIsNative(cx, &v.toObject().as<JSFunction>(), &JSFunction::class_, toString, fun_toString))
{
return true;
}
return false;
}
static bool
ValidateGlobalVariable(JSContext* cx, const AsmJSGlobal& global, HandleValue importVal, Val* val)
{
switch (global.varInitKind()) {
case AsmJSGlobal::InitConstant:
*val = global.varInitVal();
return true;
case AsmJSGlobal::InitImport: {
RootedValue v(cx);
if (!GetDataProperty(cx, importVal, global.field(), &v))
return false;
if (!v.isPrimitive() && !HasPureCoercion(cx, v))
return LinkFail(cx, "Imported values must be primitives");
switch (global.varInitImportType()) {
case ValType::I32: {
int32_t i32;
if (!ToInt32(cx, v, &i32))
return false;
*val = Val(uint32_t(i32));
return true;
}
case ValType::I64:
MOZ_CRASH("int64");
case ValType::F32: {
float f;
if (!RoundFloat32(cx, v, &f))
return false;
*val = Val(RawF32(f));
return true;
}
case ValType::F64: {
double d;
if (!ToNumber(cx, v, &d))
return false;
*val = Val(RawF64(d));
return true;
}
case ValType::I8x16: {
SimdConstant simdConstant;
if (!ToSimdConstant<Int8x16>(cx, v, &simdConstant))
return false;
*val = Val(simdConstant.asInt8x16());
return true;
}
case ValType::I16x8: {
SimdConstant simdConstant;
if (!ToSimdConstant<Int16x8>(cx, v, &simdConstant))
return false;
*val = Val(simdConstant.asInt16x8());
return true;
}
case ValType::I32x4: {
SimdConstant simdConstant;
if (!ToSimdConstant<Int32x4>(cx, v, &simdConstant))
return false;
*val = Val(simdConstant.asInt32x4());
return true;
}
case ValType::F32x4: {
SimdConstant simdConstant;
if (!ToSimdConstant<Float32x4>(cx, v, &simdConstant))
return false;
*val = Val(simdConstant.asFloat32x4());
return true;
}
case ValType::B8x16: {
SimdConstant simdConstant;
if (!ToSimdConstant<Bool8x16>(cx, v, &simdConstant))
return false;
// Bool8x16 uses the same data layout as Int8x16.
*val = Val(simdConstant.asInt8x16());
return true;
}
case ValType::B16x8: {
SimdConstant simdConstant;
if (!ToSimdConstant<Bool16x8>(cx, v, &simdConstant))
return false;
// Bool16x8 uses the same data layout as Int16x8.
*val = Val(simdConstant.asInt16x8());
return true;
}
case ValType::B32x4: {
SimdConstant simdConstant;
if (!ToSimdConstant<Bool32x4>(cx, v, &simdConstant))
return false;
// Bool32x4 uses the same data layout as Int32x4.
*val = Val(simdConstant.asInt32x4());
return true;
}
}
}
}
MOZ_CRASH("unreachable");
}
static bool
ValidateFFI(JSContext* cx, const AsmJSGlobal& global, HandleValue importVal,
MutableHandle<FunctionVector> ffis)
{
RootedValue v(cx);
if (!GetDataProperty(cx, importVal, global.field(), &v))
return false;
if (!IsFunctionObject(v))
return LinkFail(cx, "FFI imports must be functions");
ffis[global.ffiIndex()].set(&v.toObject().as<JSFunction>());
return true;
}
static bool
ValidateArrayView(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
if (!global.field())
return true;
RootedValue v(cx);
if (!GetDataProperty(cx, globalVal, global.field(), &v))
return false;
bool tac = IsTypedArrayConstructor(v, global.viewType());
if (!tac)
return LinkFail(cx, "bad typed array constructor");
return true;
}
static bool
ValidateMathBuiltinFunction(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
RootedValue v(cx);
if (!GetDataProperty(cx, globalVal, cx->names().Math, &v))
return false;
if (!GetDataProperty(cx, v, global.field(), &v))
return false;
Native native = nullptr;
switch (global.mathBuiltinFunction()) {
case AsmJSMathBuiltin_sin: native = math_sin; break;
case AsmJSMathBuiltin_cos: native = math_cos; break;
case AsmJSMathBuiltin_tan: native = math_tan; break;
case AsmJSMathBuiltin_asin: native = math_asin; break;
case AsmJSMathBuiltin_acos: native = math_acos; break;
case AsmJSMathBuiltin_atan: native = math_atan; break;
case AsmJSMathBuiltin_ceil: native = math_ceil; break;
case AsmJSMathBuiltin_floor: native = math_floor; break;
case AsmJSMathBuiltin_exp: native = math_exp; break;
case AsmJSMathBuiltin_log: native = math_log; break;
case AsmJSMathBuiltin_pow: native = math_pow; break;
case AsmJSMathBuiltin_sqrt: native = math_sqrt; break;
case AsmJSMathBuiltin_min: native = math_min; break;
case AsmJSMathBuiltin_max: native = math_max; break;
case AsmJSMathBuiltin_abs: native = math_abs; break;
case AsmJSMathBuiltin_atan2: native = math_atan2; break;
case AsmJSMathBuiltin_imul: native = math_imul; break;
case AsmJSMathBuiltin_clz32: native = math_clz32; break;
case AsmJSMathBuiltin_fround: native = math_fround; break;
}
if (!IsNativeFunction(v, native))
return LinkFail(cx, "bad Math.* builtin function");
return true;
}
static bool
ValidateSimdType(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal,
MutableHandleValue out)
{
RootedValue v(cx);
if (!GetDataProperty(cx, globalVal, cx->names().SIMD, &v))
return false;
SimdType type;
if (global.which() == AsmJSGlobal::SimdCtor)
type = global.simdCtorType();
else
type = global.simdOperationType();
RootedPropertyName simdTypeName(cx, SimdTypeToName(cx->names(), type));
if (!GetDataProperty(cx, v, simdTypeName, &v))
return false;
if (!v.isObject())
return LinkFail(cx, "bad SIMD type");
RootedObject simdDesc(cx, &v.toObject());
if (!simdDesc->is<SimdTypeDescr>())
return LinkFail(cx, "bad SIMD type");
if (type != simdDesc->as<SimdTypeDescr>().type())
return LinkFail(cx, "bad SIMD type");
out.set(v);
return true;
}
static bool
ValidateSimdType(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
RootedValue _(cx);
return ValidateSimdType(cx, global, globalVal, &_);
}
static bool
ValidateSimdOperation(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
RootedValue v(cx);
JS_ALWAYS_TRUE(ValidateSimdType(cx, global, globalVal, &v));
if (!GetDataProperty(cx, v, global.field(), &v))
return false;
Native native = nullptr;
switch (global.simdOperationType()) {
#define SET_NATIVE_INT8X16(op) case SimdOperation::Fn_##op: native = simd_int8x16_##op; break;
#define SET_NATIVE_INT16X8(op) case SimdOperation::Fn_##op: native = simd_int16x8_##op; break;
#define SET_NATIVE_INT32X4(op) case SimdOperation::Fn_##op: native = simd_int32x4_##op; break;
#define SET_NATIVE_UINT8X16(op) case SimdOperation::Fn_##op: native = simd_uint8x16_##op; break;
#define SET_NATIVE_UINT16X8(op) case SimdOperation::Fn_##op: native = simd_uint16x8_##op; break;
#define SET_NATIVE_UINT32X4(op) case SimdOperation::Fn_##op: native = simd_uint32x4_##op; break;
#define SET_NATIVE_FLOAT32X4(op) case SimdOperation::Fn_##op: native = simd_float32x4_##op; break;
#define SET_NATIVE_BOOL8X16(op) case SimdOperation::Fn_##op: native = simd_bool8x16_##op; break;
#define SET_NATIVE_BOOL16X8(op) case SimdOperation::Fn_##op: native = simd_bool16x8_##op; break;
#define SET_NATIVE_BOOL32X4(op) case SimdOperation::Fn_##op: native = simd_bool32x4_##op; break;
#define FALLTHROUGH(op) case SimdOperation::Fn_##op:
case SimdType::Int8x16:
switch (global.simdOperation()) {
FORALL_INT8X16_ASMJS_OP(SET_NATIVE_INT8X16)
SET_NATIVE_INT8X16(fromUint8x16Bits)
SET_NATIVE_INT8X16(fromUint16x8Bits)
SET_NATIVE_INT8X16(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Int16x8:
switch (global.simdOperation()) {
FORALL_INT16X8_ASMJS_OP(SET_NATIVE_INT16X8)
SET_NATIVE_INT16X8(fromUint8x16Bits)
SET_NATIVE_INT16X8(fromUint16x8Bits)
SET_NATIVE_INT16X8(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Int32x4:
switch (global.simdOperation()) {
FORALL_INT32X4_ASMJS_OP(SET_NATIVE_INT32X4)
SET_NATIVE_INT32X4(fromUint8x16Bits)
SET_NATIVE_INT32X4(fromUint16x8Bits)
SET_NATIVE_INT32X4(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Uint8x16:
switch (global.simdOperation()) {
FORALL_INT8X16_ASMJS_OP(SET_NATIVE_UINT8X16)
SET_NATIVE_UINT8X16(fromInt8x16Bits)
SET_NATIVE_UINT8X16(fromUint16x8Bits)
SET_NATIVE_UINT8X16(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Uint16x8:
switch (global.simdOperation()) {
FORALL_INT16X8_ASMJS_OP(SET_NATIVE_UINT16X8)
SET_NATIVE_UINT16X8(fromUint8x16Bits)
SET_NATIVE_UINT16X8(fromInt16x8Bits)
SET_NATIVE_UINT16X8(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Uint32x4:
switch (global.simdOperation()) {
FORALL_INT32X4_ASMJS_OP(SET_NATIVE_UINT32X4)
SET_NATIVE_UINT32X4(fromUint8x16Bits)
SET_NATIVE_UINT32X4(fromUint16x8Bits)
SET_NATIVE_UINT32X4(fromInt32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Float32x4:
switch (global.simdOperation()) {
FORALL_FLOAT32X4_ASMJS_OP(SET_NATIVE_FLOAT32X4)
SET_NATIVE_FLOAT32X4(fromUint8x16Bits)
SET_NATIVE_FLOAT32X4(fromUint16x8Bits)
SET_NATIVE_FLOAT32X4(fromUint32x4Bits)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Bool8x16:
switch (global.simdOperation()) {
FORALL_BOOL_SIMD_OP(SET_NATIVE_BOOL8X16)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Bool16x8:
switch (global.simdOperation()) {
FORALL_BOOL_SIMD_OP(SET_NATIVE_BOOL16X8)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
case SimdType::Bool32x4:
switch (global.simdOperation()) {
FORALL_BOOL_SIMD_OP(SET_NATIVE_BOOL32X4)
default: MOZ_CRASH("shouldn't have been validated in the first place");
}
break;
default: MOZ_CRASH("unhandled simd type");
#undef FALLTHROUGH
#undef SET_NATIVE_INT8X16
#undef SET_NATIVE_INT16X8
#undef SET_NATIVE_INT32X4
#undef SET_NATIVE_UINT8X16
#undef SET_NATIVE_UINT16X8
#undef SET_NATIVE_UINT32X4
#undef SET_NATIVE_FLOAT32X4
#undef SET_NATIVE_BOOL8X16
#undef SET_NATIVE_BOOL16X8
#undef SET_NATIVE_BOOL32X4
#undef SET_NATIVE
}
if (!native || !IsNativeFunction(v, native))
return LinkFail(cx, "bad SIMD.type.* operation");
return true;
}
static bool
ValidateAtomicsBuiltinFunction(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
RootedValue v(cx);
if (!GetDataProperty(cx, globalVal, cx->names().Atomics, &v))
return false;
if (!GetDataProperty(cx, v, global.field(), &v))
return false;
Native native = nullptr;
switch (global.atomicsBuiltinFunction()) {
case AsmJSAtomicsBuiltin_compareExchange: native = atomics_compareExchange; break;
case AsmJSAtomicsBuiltin_exchange: native = atomics_exchange; break;
case AsmJSAtomicsBuiltin_load: native = atomics_load; break;
case AsmJSAtomicsBuiltin_store: native = atomics_store; break;
case AsmJSAtomicsBuiltin_add: native = atomics_add; break;
case AsmJSAtomicsBuiltin_sub: native = atomics_sub; break;
case AsmJSAtomicsBuiltin_and: native = atomics_and; break;
case AsmJSAtomicsBuiltin_or: native = atomics_or; break;
case AsmJSAtomicsBuiltin_xor: native = atomics_xor; break;
case AsmJSAtomicsBuiltin_isLockFree: native = atomics_isLockFree; break;
}
if (!IsNativeFunction(v, native))
return LinkFail(cx, "bad Atomics.* builtin function");
return true;
}
static bool
ValidateConstant(JSContext* cx, const AsmJSGlobal& global, HandleValue globalVal)
{
RootedValue v(cx, globalVal);
if (global.constantKind() == AsmJSGlobal::MathConstant) {
if (!GetDataProperty(cx, v, cx->names().Math, &v))
return false;
}
if (!GetDataProperty(cx, v, global.field(), &v))
return false;
if (!v.isNumber())
return LinkFail(cx, "math / global constant value needs to be a number");
// NaN != NaN
if (IsNaN(global.constantValue())) {
if (!IsNaN(v.toNumber()))
return LinkFail(cx, "global constant value needs to be NaN");
} else {
if (v.toNumber() != global.constantValue())
return LinkFail(cx, "global constant value mismatch");
}
return true;
}
static bool
CheckBuffer(JSContext* cx, const AsmJSMetadata& metadata, HandleValue bufferVal,
MutableHandle<ArrayBufferObjectMaybeShared*> buffer)
{
if (metadata.memoryUsage == MemoryUsage::Shared) {
if (!IsSharedArrayBuffer(bufferVal))
return LinkFail(cx, "shared views can only be constructed onto SharedArrayBuffer");
} else {
if (!IsArrayBuffer(bufferVal))
return LinkFail(cx, "unshared views can only be constructed onto ArrayBuffer");
}
buffer.set(&AsAnyArrayBuffer(bufferVal));
uint32_t memoryLength = buffer->byteLength();
if (!IsValidAsmJSHeapLength(memoryLength)) {
UniqueChars msg(
JS_smprintf("ArrayBuffer byteLength 0x%x is not a valid heap length. The next "
"valid length is 0x%x",
memoryLength,
RoundUpToNextValidAsmJSHeapLength(memoryLength)));
if (!msg)
return false;
return LinkFail(cx, msg.get());
}
// This check is sufficient without considering the size of the loaded datum because heap
// loads and stores start on an aligned boundary and the heap byteLength has larger alignment.
MOZ_ASSERT((metadata.minMemoryLength - 1) <= INT32_MAX);
if (memoryLength < metadata.minMemoryLength) {
UniqueChars msg(
JS_smprintf("ArrayBuffer byteLength of 0x%x is less than 0x%x (the size implied "
"by const heap accesses).",
memoryLength,
metadata.minMemoryLength));
if (!msg)
return false;
return LinkFail(cx, msg.get());
}
if (buffer->is<ArrayBufferObject>()) {
// On 64-bit, bounds checks are statically removed so the huge guard
// region is always necessary. On 32-bit, allocating a guard page
// requires reallocating the incoming ArrayBuffer which could trigger
// OOM. Thus, only ask for a guard page when SIMD is used since SIMD
// allows unaligned memory access (see MaxMemoryAccessSize comment);
#ifdef WASM_HUGE_MEMORY
bool needGuard = true;
#else
bool needGuard = metadata.usesSimd;
#endif
Rooted<ArrayBufferObject*> arrayBuffer(cx, &buffer->as<ArrayBufferObject>());
if (!ArrayBufferObject::prepareForAsmJS(cx, arrayBuffer, needGuard))
return LinkFail(cx, "Unable to prepare ArrayBuffer for asm.js use");
} else {
if (!buffer->as<SharedArrayBufferObject>().isPreparedForAsmJS())
return LinkFail(cx, "SharedArrayBuffer must be created with wasm test mode enabled");
}
MOZ_ASSERT(buffer->isPreparedForAsmJS());
return true;
}
static bool
GetImports(JSContext* cx, const AsmJSMetadata& metadata, HandleValue globalVal,
HandleValue importVal, MutableHandle<FunctionVector> funcImports, ValVector* valImports)
{
Rooted<FunctionVector> ffis(cx, FunctionVector(cx));
if (!ffis.resize(metadata.numFFIs))
return false;
for (const AsmJSGlobal& global : metadata.asmJSGlobals) {
switch (global.which()) {
case AsmJSGlobal::Variable: {
Val val;
if (!ValidateGlobalVariable(cx, global, importVal, &val))
return false;
if (!valImports->append(val))
return false;
break;
}
case AsmJSGlobal::FFI:
if (!ValidateFFI(cx, global, importVal, &ffis))
return false;
break;
case AsmJSGlobal::ArrayView:
case AsmJSGlobal::ArrayViewCtor:
if (!ValidateArrayView(cx, global, globalVal))
return false;
break;
case AsmJSGlobal::MathBuiltinFunction:
if (!ValidateMathBuiltinFunction(cx, global, globalVal))
return false;
break;
case AsmJSGlobal::AtomicsBuiltinFunction:
if (!ValidateAtomicsBuiltinFunction(cx, global, globalVal))
return false;
break;
case AsmJSGlobal::Constant:
if (!ValidateConstant(cx, global, globalVal))
return false;
break;
case AsmJSGlobal::SimdCtor:
if (!ValidateSimdType(cx, global, globalVal))
return false;
break;
case AsmJSGlobal::SimdOp:
if (!ValidateSimdOperation(cx, global, globalVal))
return false;
break;
}
}
for (const AsmJSImport& import : metadata.asmJSImports) {
if (!funcImports.append(ffis[import.ffiIndex()]))
return false;
}
return true;
}
static bool
TryInstantiate(JSContext* cx, CallArgs args, Module& module, const AsmJSMetadata& metadata,
MutableHandleWasmInstanceObject instanceObj, MutableHandleObject exportObj)
{
HandleValue globalVal = args.get(0);
HandleValue importVal = args.get(1);
HandleValue bufferVal = args.get(2);
RootedArrayBufferObjectMaybeShared buffer(cx);
RootedWasmMemoryObject memory(cx);
if (module.metadata().usesMemory()) {
if (!CheckBuffer(cx, metadata, bufferVal, &buffer))
return false;
memory = WasmMemoryObject::create(cx, buffer, nullptr);
if (!memory)
return false;
}
ValVector valImports;
Rooted<FunctionVector> funcs(cx, FunctionVector(cx));
if (!GetImports(cx, metadata, globalVal, importVal, &funcs, &valImports))
return false;
RootedWasmTableObject table(cx);
if (!module.instantiate(cx, funcs, table, memory, valImports, nullptr, instanceObj))
return false;
RootedValue exportObjVal(cx);
if (!JS_GetProperty(cx, instanceObj, InstanceExportField, &exportObjVal))
return false;
MOZ_RELEASE_ASSERT(exportObjVal.isObject());
exportObj.set(&exportObjVal.toObject());
return true;
}
static bool
HandleInstantiationFailure(JSContext* cx, CallArgs args, const AsmJSMetadata& metadata)
{
RootedAtom name(cx, args.callee().as<JSFunction>().explicitName());
if (cx->isExceptionPending())
return false;
ScriptSource* source = metadata.scriptSource.get();
// Source discarding is allowed to affect JS semantics because it is never
// enabled for normal JS content.
bool haveSource = source->hasSourceData();
if (!haveSource && !JSScript::loadSource(cx, source, &haveSource))
return false;
if (!haveSource) {
JS_ReportErrorASCII(cx, "asm.js link failure with source discarding enabled");
return false;
}
uint32_t begin = metadata.preludeStart;
uint32_t end = metadata.srcEndAfterCurly();
Rooted<JSFlatString*> src(cx, source->substringDontDeflate(cx, begin, end));
if (!src)
return false;
RootedFunction fun(cx, NewScriptedFunction(cx, 0, JSFunction::INTERPRETED_NORMAL,
name, /* proto = */ nullptr, gc::AllocKind::FUNCTION,
TenuredObject));
if (!fun)
return false;
CompileOptions options(cx);
options.setMutedErrors(source->mutedErrors())
.setFile(source->filename())
.setNoScriptRval(false);
options.asmJSOption = AsmJSOption::Disabled;
// The exported function inherits an implicit strict context if the module
// also inherited it somehow.
if (metadata.strict)
options.strictOption = true;
AutoStableStringChars stableChars(cx);
if (!stableChars.initTwoByte(cx, src))
return false;
const char16_t* chars = stableChars.twoByteRange().begin().get();
SourceBufferHolder::Ownership ownership = stableChars.maybeGiveOwnershipToCaller()
? SourceBufferHolder::GiveOwnership
: SourceBufferHolder::NoOwnership;
SourceBufferHolder srcBuf(chars, end - begin, ownership);
if (!frontend::CompileStandaloneFunction(cx, &fun, options, srcBuf, Nothing()))
return false;
// Call the function we just recompiled.
args.setCallee(ObjectValue(*fun));
return InternalCallOrConstruct(cx, args, args.isConstructing() ? CONSTRUCT : NO_CONSTRUCT);
}
static Module&
AsmJSModuleFunctionToModule(JSFunction* fun)
{
MOZ_ASSERT(IsAsmJSModule(fun));
const Value& v = fun->getExtendedSlot(FunctionExtended::ASMJS_MODULE_SLOT);
return v.toObject().as<WasmModuleObject>().module();
}
// Implements the semantics of an asm.js module function that has been successfully validated.
static bool
InstantiateAsmJS(JSContext* cx, unsigned argc, JS::Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSFunction* callee = &args.callee().as<JSFunction>();
Module& module = AsmJSModuleFunctionToModule(callee);
const AsmJSMetadata& metadata = module.metadata().asAsmJS();
RootedWasmInstanceObject instanceObj(cx);
RootedObject exportObj(cx);
if (!TryInstantiate(cx, args, module, metadata, &instanceObj, &exportObj)) {
// Link-time validation checks failed, so reparse the entire asm.js
// module from scratch to get normal interpreted bytecode which we can
// simply Invoke. Very slow.
return HandleInstantiationFailure(cx, args, metadata);
}
args.rval().set(ObjectValue(*exportObj));
return true;
}
static JSFunction*
NewAsmJSModuleFunction(ExclusiveContext* cx, JSFunction* origFun, HandleObject moduleObj)
{
RootedAtom name(cx, origFun->explicitName());
JSFunction::Flags flags = origFun->isLambda() ? JSFunction::ASMJS_LAMBDA_CTOR
: JSFunction::ASMJS_CTOR;
JSFunction* moduleFun =
NewNativeConstructor(cx, InstantiateAsmJS, origFun->nargs(), name,
gc::AllocKind::FUNCTION_EXTENDED, TenuredObject,
flags);
if (!moduleFun)
return nullptr;
moduleFun->setExtendedSlot(FunctionExtended::ASMJS_MODULE_SLOT, ObjectValue(*moduleObj));
MOZ_ASSERT(IsAsmJSModule(moduleFun));
return moduleFun;
}
/*****************************************************************************/
// Caching and cloning
size_t
AsmJSGlobal::serializedSize() const
{
return sizeof(pod) +
field_.serializedSize();
}
uint8_t*
AsmJSGlobal::serialize(uint8_t* cursor) const
{
cursor = WriteBytes(cursor, &pod, sizeof(pod));
cursor = field_.serialize(cursor);
return cursor;
}
const uint8_t*
AsmJSGlobal::deserialize(const uint8_t* cursor)
{
(cursor = ReadBytes(cursor, &pod, sizeof(pod))) &&
(cursor = field_.deserialize(cursor));
return cursor;
}
size_t
AsmJSGlobal::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return field_.sizeOfExcludingThis(mallocSizeOf);
}
size_t
AsmJSMetadata::serializedSize() const
{
return Metadata::serializedSize() +
sizeof(pod()) +
SerializedVectorSize(asmJSGlobals) +
SerializedPodVectorSize(asmJSImports) +
SerializedPodVectorSize(asmJSExports) +
SerializedVectorSize(asmJSFuncNames) +
globalArgumentName.serializedSize() +
importArgumentName.serializedSize() +
bufferArgumentName.serializedSize();
}
uint8_t*
AsmJSMetadata::serialize(uint8_t* cursor) const
{
cursor = Metadata::serialize(cursor);
cursor = WriteBytes(cursor, &pod(), sizeof(pod()));
cursor = SerializeVector(cursor, asmJSGlobals);
cursor = SerializePodVector(cursor, asmJSImports);
cursor = SerializePodVector(cursor, asmJSExports);
cursor = SerializeVector(cursor, asmJSFuncNames);
cursor = globalArgumentName.serialize(cursor);
cursor = importArgumentName.serialize(cursor);
cursor = bufferArgumentName.serialize(cursor);
return cursor;
}
const uint8_t*
AsmJSMetadata::deserialize(const uint8_t* cursor)
{
(cursor = Metadata::deserialize(cursor)) &&
(cursor = ReadBytes(cursor, &pod(), sizeof(pod()))) &&
(cursor = DeserializeVector(cursor, &asmJSGlobals)) &&
(cursor = DeserializePodVector(cursor, &asmJSImports)) &&
(cursor = DeserializePodVector(cursor, &asmJSExports)) &&
(cursor = DeserializeVector(cursor, &asmJSFuncNames)) &&
(cursor = globalArgumentName.deserialize(cursor)) &&
(cursor = importArgumentName.deserialize(cursor)) &&
(cursor = bufferArgumentName.deserialize(cursor));
cacheResult = CacheResult::Hit;
return cursor;
}
size_t
AsmJSMetadata::sizeOfExcludingThis(MallocSizeOf mallocSizeOf) const
{
return Metadata::sizeOfExcludingThis(mallocSizeOf) +
SizeOfVectorExcludingThis(asmJSGlobals, mallocSizeOf) +
asmJSImports.sizeOfExcludingThis(mallocSizeOf) +
asmJSExports.sizeOfExcludingThis(mallocSizeOf) +
SizeOfVectorExcludingThis(asmJSFuncNames, mallocSizeOf) +
globalArgumentName.sizeOfExcludingThis(mallocSizeOf) +
importArgumentName.sizeOfExcludingThis(mallocSizeOf) +
bufferArgumentName.sizeOfExcludingThis(mallocSizeOf);
}
namespace {
class ModuleChars
{
protected:
uint32_t isFunCtor_;
Vector<CacheableChars, 0, SystemAllocPolicy> funCtorArgs_;
public:
static uint32_t beginOffset(AsmJSParser& parser) {
return parser.pc->functionBox()->functionNode->pn_pos.begin;
}
static uint32_t endOffset(AsmJSParser& parser) {
TokenPos pos(0, 0); // initialize to silence GCC warning
MOZ_ALWAYS_TRUE(parser.tokenStream.peekTokenPos(&pos, TokenStream::Operand));
return pos.end;
}
};
class ModuleCharsForStore : ModuleChars
{
uint32_t uncompressedSize_;
uint32_t compressedSize_;
Vector<char, 0, SystemAllocPolicy> compressedBuffer_;
public:
bool init(AsmJSParser& parser) {
MOZ_ASSERT(beginOffset(parser) < endOffset(parser));
uncompressedSize_ = (endOffset(parser) - beginOffset(parser)) * sizeof(char16_t);
size_t maxCompressedSize = LZ4::maxCompressedSize(uncompressedSize_);
if (maxCompressedSize < uncompressedSize_)
return false;
if (!compressedBuffer_.resize(maxCompressedSize))
return false;
const char16_t* chars = parser.tokenStream.rawCharPtrAt(beginOffset(parser));
const char* source = reinterpret_cast<const char*>(chars);
size_t compressedSize = LZ4::compress(source, uncompressedSize_, compressedBuffer_.begin());
if (!compressedSize || compressedSize > UINT32_MAX)
return false;
compressedSize_ = compressedSize;
// For a function statement or named function expression:
// function f(x,y,z) { abc }
// the range [beginOffset, endOffset) captures the source:
// f(x,y,z) { abc }
// An unnamed function expression captures the same thing, sans 'f'.
// Since asm.js modules do not contain any free variables, equality of
// [beginOffset, endOffset) is sufficient to guarantee identical code
// generation, modulo Assumptions.
//
// For functions created with 'new Function', function arguments are
// not present in the source so we must manually explicitly serialize
// and match the formals as a Vector of PropertyName.
isFunCtor_ = parser.pc->isStandaloneFunctionBody();
if (isFunCtor_) {
unsigned numArgs;
ParseNode* functionNode = parser.pc->functionBox()->functionNode;
ParseNode* arg = FunctionFormalParametersList(functionNode, &numArgs);
for (unsigned i = 0; i < numArgs; i++, arg = arg->pn_next) {
UniqueChars name = StringToNewUTF8CharsZ(nullptr, *arg->name());
if (!name || !funCtorArgs_.append(Move(name)))
return false;
}
}
return true;
}
size_t serializedSize() const {
return sizeof(uint32_t) +
sizeof(uint32_t) +
compressedSize_ +
sizeof(uint32_t) +
(isFunCtor_ ? SerializedVectorSize(funCtorArgs_) : 0);
}
uint8_t* serialize(uint8_t* cursor) const {
cursor = WriteScalar<uint32_t>(cursor, uncompressedSize_);
cursor = WriteScalar<uint32_t>(cursor, compressedSize_);
cursor = WriteBytes(cursor, compressedBuffer_.begin(), compressedSize_);
cursor = WriteScalar<uint32_t>(cursor, isFunCtor_);
if (isFunCtor_)
cursor = SerializeVector(cursor, funCtorArgs_);
return cursor;
}
};
class ModuleCharsForLookup : ModuleChars
{
Vector<char16_t, 0, SystemAllocPolicy> chars_;
public:
const uint8_t* deserialize(const uint8_t* cursor) {
uint32_t uncompressedSize;
cursor = ReadScalar<uint32_t>(cursor, &uncompressedSize);
uint32_t compressedSize;
cursor = ReadScalar<uint32_t>(cursor, &compressedSize);
if (!chars_.resize(uncompressedSize / sizeof(char16_t)))
return nullptr;
const char* source = reinterpret_cast<const char*>(cursor);
char* dest = reinterpret_cast<char*>(chars_.begin());
if (!LZ4::decompress(source, dest, uncompressedSize))
return nullptr;
cursor += compressedSize;
cursor = ReadScalar<uint32_t>(cursor, &isFunCtor_);
if (isFunCtor_)
cursor = DeserializeVector(cursor, &funCtorArgs_);
return cursor;
}
bool match(AsmJSParser& parser) const {
const char16_t* parseBegin = parser.tokenStream.rawCharPtrAt(beginOffset(parser));
const char16_t* parseLimit = parser.tokenStream.rawLimit();
MOZ_ASSERT(parseLimit >= parseBegin);
if (uint32_t(parseLimit - parseBegin) < chars_.length())
return false;
if (!PodEqual(chars_.begin(), parseBegin, chars_.length()))
return false;
if (isFunCtor_ != parser.pc->isStandaloneFunctionBody())
return false;
if (isFunCtor_) {
// For function statements, the closing } is included as the last
// character of the matched source. For Function constructor,
// parsing terminates with EOF which we must explicitly check. This
// prevents
// new Function('"use asm"; function f() {} return f')
// from incorrectly matching
// new Function('"use asm"; function f() {} return ff')
if (parseBegin + chars_.length() != parseLimit)
return false;
unsigned numArgs;
ParseNode* functionNode = parser.pc->functionBox()->functionNode;
ParseNode* arg = FunctionFormalParametersList(functionNode, &numArgs);
if (funCtorArgs_.length() != numArgs)
return false;
for (unsigned i = 0; i < funCtorArgs_.length(); i++, arg = arg->pn_next) {
UniqueChars name = StringToNewUTF8CharsZ(nullptr, *arg->name());
if (!name || strcmp(funCtorArgs_[i].get(), name.get()))
return false;
}
}
return true;
}
};
struct ScopedCacheEntryOpenedForWrite
{
ExclusiveContext* cx;
const size_t serializedSize;
uint8_t* memory;
intptr_t handle;
ScopedCacheEntryOpenedForWrite(ExclusiveContext* cx, size_t serializedSize)
: cx(cx), serializedSize(serializedSize), memory(nullptr), handle(-1)
{}
~ScopedCacheEntryOpenedForWrite() {
if (memory)
cx->asmJSCacheOps().closeEntryForWrite(serializedSize, memory, handle);
}
};
struct ScopedCacheEntryOpenedForRead
{
ExclusiveContext* cx;
size_t serializedSize;
const uint8_t* memory;
intptr_t handle;
explicit ScopedCacheEntryOpenedForRead(ExclusiveContext* cx)
: cx(cx), serializedSize(0), memory(nullptr), handle(0)
{}
~ScopedCacheEntryOpenedForRead() {
if (memory)
cx->asmJSCacheOps().closeEntryForRead(serializedSize, memory, handle);
}
};
} // unnamed namespace
static JS::AsmJSCacheResult
StoreAsmJSModuleInCache(AsmJSParser& parser, Module& module, ExclusiveContext* cx)
{
ModuleCharsForStore moduleChars;
if (!moduleChars.init(parser))
return JS::AsmJSCache_InternalError;
size_t bytecodeSize, compiledSize;
module.serializedSize(&bytecodeSize, &compiledSize);
MOZ_RELEASE_ASSERT(bytecodeSize == 0);
MOZ_RELEASE_ASSERT(compiledSize <= UINT32_MAX);
size_t serializedSize = sizeof(uint32_t) +
compiledSize +
moduleChars.serializedSize();
JS::OpenAsmJSCacheEntryForWriteOp open = cx->asmJSCacheOps().openEntryForWrite;
if (!open)
return JS::AsmJSCache_Disabled_Internal;
const char16_t* begin = parser.tokenStream.rawCharPtrAt(ModuleChars::beginOffset(parser));
const char16_t* end = parser.tokenStream.rawCharPtrAt(ModuleChars::endOffset(parser));
bool installed = parser.options().installedFile;
ScopedCacheEntryOpenedForWrite entry(cx, serializedSize);
JS::AsmJSCacheResult openResult =
open(cx->global(), installed, begin, end, serializedSize, &entry.memory, &entry.handle);
if (openResult != JS::AsmJSCache_Success)
return openResult;
uint8_t* cursor = entry.memory;
// Everything serialized before the Module must not change incompatibly
// between any two builds (regardless of platform, architecture, ...).
// (The Module::assumptionsMatch() guard everything in the Module and
// afterwards.)
cursor = WriteScalar<uint32_t>(cursor, compiledSize);
module.serialize(/* bytecodeBegin = */ nullptr, /* bytecodeSize = */ 0, cursor, compiledSize);
cursor += compiledSize;
cursor = moduleChars.serialize(cursor);
MOZ_RELEASE_ASSERT(cursor == entry.memory + serializedSize);
return JS::AsmJSCache_Success;
}
static bool
LookupAsmJSModuleInCache(ExclusiveContext* cx, AsmJSParser& parser, bool* loadedFromCache,
SharedModule* module, UniqueChars* compilationTimeReport)
{
int64_t before = PRMJ_Now();
*loadedFromCache = false;
JS::OpenAsmJSCacheEntryForReadOp open = cx->asmJSCacheOps().openEntryForRead;
if (!open)
return true;
const char16_t* begin = parser.tokenStream.rawCharPtrAt(ModuleChars::beginOffset(parser));
const char16_t* limit = parser.tokenStream.rawLimit();
ScopedCacheEntryOpenedForRead entry(cx);
if (!open(cx->global(), begin, limit, &entry.serializedSize, &entry.memory, &entry.handle))
return true;
size_t remain = entry.serializedSize;
const uint8_t* cursor = entry.memory;
uint32_t compiledSize;
cursor = ReadScalarChecked<uint32_t>(cursor, &remain, &compiledSize);
if (!cursor)
return true;
Assumptions assumptions;
if (!assumptions.initBuildIdFromContext(cx))
return false;
if (!Module::assumptionsMatch(assumptions, cursor, remain))
return true;
MutableAsmJSMetadata asmJSMetadata = cx->new_<AsmJSMetadata>();
if (!asmJSMetadata)
return false;
*module = Module::deserialize(/* bytecodeBegin = */ nullptr, /* bytecodeSize = */ 0,
cursor, compiledSize, asmJSMetadata.get());
if (!*module) {
ReportOutOfMemory(cx);
return false;
}
cursor += compiledSize;
// Due to the hash comparison made by openEntryForRead, this should succeed
// with high probability.
ModuleCharsForLookup moduleChars;
cursor = moduleChars.deserialize(cursor);
if (!moduleChars.match(parser))
return true;
// Don't punish release users by crashing if there is a programmer error
// here, just gracefully return with a cache miss.
#ifdef NIGHTLY_BUILD
MOZ_RELEASE_ASSERT(cursor == entry.memory + entry.serializedSize);
#endif
if (cursor != entry.memory + entry.serializedSize)
return true;
// See AsmJSMetadata comment as well as ModuleValidator::init().
asmJSMetadata->preludeStart = parser.pc->functionBox()->preludeStart;
asmJSMetadata->srcStart = parser.pc->functionBox()->functionNode->pn_body->pn_pos.begin;
asmJSMetadata->srcBodyStart = parser.tokenStream.currentToken().pos.end;
asmJSMetadata->strict = parser.pc->sc()->strict() && !parser.pc->sc()->hasExplicitUseStrict();
asmJSMetadata->scriptSource.reset(parser.ss);
if (!parser.tokenStream.advance(asmJSMetadata->srcEndBeforeCurly()))
return false;
int64_t after = PRMJ_Now();
int ms = (after - before) / PRMJ_USEC_PER_MSEC;
*compilationTimeReport = UniqueChars(JS_smprintf("loaded from cache in %dms", ms));
if (!*compilationTimeReport)
return false;
*loadedFromCache = true;
return true;
}
/*****************************************************************************/
// Top-level js::CompileAsmJS
static bool
NoExceptionPending(ExclusiveContext* cx)
{
return !cx->isJSContext() || !cx->asJSContext()->isExceptionPending();
}
static bool
Warn(AsmJSParser& parser, int errorNumber, const char* str)
{
ParseReportKind reportKind = parser.options().throwOnAsmJSValidationFailureOption &&
errorNumber == JSMSG_USE_ASM_TYPE_FAIL
? ParseError
: ParseWarning;
parser.reportNoOffset(reportKind, /* strict = */ false, errorNumber, str ? str : "");
return false;
}
static bool
EstablishPreconditions(ExclusiveContext* cx, AsmJSParser& parser)
{
if (!HasCompilerSupport(cx))
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by lack of compiler support");
switch (parser.options().asmJSOption) {
case AsmJSOption::Disabled:
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by 'asmjs' runtime option");
case AsmJSOption::DisabledByDebugger:
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by debugger");
case AsmJSOption::Enabled:
break;
}
if (parser.pc->isGenerator())
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by generator context");
if (parser.pc->isArrowFunction())
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by arrow function context");
// Class constructors are also methods
if (parser.pc->isMethod())
return Warn(parser, JSMSG_USE_ASM_TYPE_FAIL, "Disabled by class constructor or method context");
return true;
}
static UniqueChars
BuildConsoleMessage(ExclusiveContext* cx, unsigned time, JS::AsmJSCacheResult cacheResult)
{
#ifndef JS_MORE_DETERMINISTIC
const char* cacheString = "";
switch (cacheResult) {
case JS::AsmJSCache_Success:
cacheString = "stored in cache";
break;
case JS::AsmJSCache_ModuleTooSmall:
cacheString = "not stored in cache (too small to benefit)";
break;
case JS::AsmJSCache_SynchronousScript:
cacheString = "unable to cache asm.js in synchronous scripts; try loading "
"asm.js via <script async> or createElement('script')";
break;
case JS::AsmJSCache_QuotaExceeded:
cacheString = "not enough temporary storage quota to store in cache";
break;
case JS::AsmJSCache_StorageInitFailure:
cacheString = "storage initialization failed (consider filing a bug)";
break;
case JS::AsmJSCache_Disabled_Internal:
cacheString = "caching disabled by internal configuration (consider filing a bug)";
break;
case JS::AsmJSCache_Disabled_ShellFlags:
cacheString = "caching disabled by missing command-line arguments";
break;
case JS::AsmJSCache_Disabled_JitInspector:
cacheString = "caching disabled by active JIT inspector";
break;
case JS::AsmJSCache_InternalError:
cacheString = "unable to store in cache due to internal error (consider filing a bug)";
break;
case JS::AsmJSCache_Disabled_PrivateBrowsing:
cacheString = "caching disabled by private browsing mode";
break;
case JS::AsmJSCache_LIMIT:
MOZ_CRASH("bad AsmJSCacheResult");
break;
}
return UniqueChars(JS_smprintf("total compilation time %dms; %s", time, cacheString));
#else
return DuplicateString("");
#endif
}
bool
js::CompileAsmJS(ExclusiveContext* cx, AsmJSParser& parser, ParseNode* stmtList, bool* validated)
{
*validated = false;
// Various conditions disable asm.js optimizations.
if (!EstablishPreconditions(cx, parser))
return NoExceptionPending(cx);
// Before spending any time parsing the module, try to look it up in the
// embedding's cache using the chars about to be parsed as the key.
bool loadedFromCache;
SharedModule module;
UniqueChars message;
if (!LookupAsmJSModuleInCache(cx, parser, &loadedFromCache, &module, &message))
return false;
// If not present in the cache, parse, validate and generate code in a
// single linear pass over the chars of the asm.js module.
if (!loadedFromCache) {
// "Checking" parses, validates and compiles, producing a fully compiled
// WasmModuleObject as result.
unsigned time;
module = CheckModule(cx, parser, stmtList, &time);
if (!module)
return NoExceptionPending(cx);
// Try to store the AsmJSModule in the embedding's cache. The
// AsmJSModule must be stored before static linking since static linking
// specializes the AsmJSModule to the current process's address space
// and therefore must be executed after a cache hit.
JS::AsmJSCacheResult cacheResult = StoreAsmJSModuleInCache(parser, *module, cx);
// Build the string message to display in the developer console.
message = BuildConsoleMessage(cx, time, cacheResult);
if (!message)
return NoExceptionPending(cx);
}
// Hand over ownership to a GC object wrapper which can then be referenced
// from the module function.
Rooted<WasmModuleObject*> moduleObj(cx, WasmModuleObject::create(cx, *module));
if (!moduleObj)
return false;
// The module function dynamically links the AsmJSModule when called and
// generates a set of functions wrapping all the exports.
FunctionBox* funbox = parser.pc->functionBox();
RootedFunction moduleFun(cx, NewAsmJSModuleFunction(cx, funbox->function(), moduleObj));
if (!moduleFun)
return false;
// Finished! Clobber the default function created by the parser with the new
// asm.js module function. Special cases in the bytecode emitter avoid
// generating bytecode for asm.js functions, allowing this asm.js module
// function to be the finished result.
MOZ_ASSERT(funbox->function()->isInterpreted());
funbox->object = moduleFun;
// Success! Write to the console with a "warning" message.
*validated = true;
Warn(parser, JSMSG_USE_ASM_TYPE_OK, message.get());
return NoExceptionPending(cx);
}
/*****************************************************************************/
// asm.js testing functions
bool
js::IsAsmJSModuleNative(Native native)
{
return native == InstantiateAsmJS;
}
bool
js::IsAsmJSModule(JSFunction* fun)
{
return fun->maybeNative() == InstantiateAsmJS;
}
bool
js::IsAsmJSFunction(JSFunction* fun)
{
if (IsExportedFunction(fun))
return ExportedFunctionToInstance(fun).metadata().isAsmJS();
return false;
}
bool
js::IsAsmJSStrictModeModuleOrFunction(JSFunction* fun)
{
if (IsAsmJSModule(fun))
return AsmJSModuleFunctionToModule(fun).metadata().asAsmJS().strict;
if (IsAsmJSFunction(fun))
return ExportedFunctionToInstance(fun).metadata().asAsmJS().strict;
return false;
}
bool
js::IsAsmJSCompilationAvailable(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
// See EstablishPreconditions.
bool available = HasCompilerSupport(cx) && cx->options().asmJS();
args.rval().set(BooleanValue(available));
return true;
}
static JSFunction*
MaybeWrappedNativeFunction(const Value& v)
{
if (!v.isObject())
return nullptr;
JSObject* obj = CheckedUnwrap(&v.toObject());
if (!obj)
return nullptr;
if (!obj->is<JSFunction>())
return nullptr;
return &obj->as<JSFunction>();
}
bool
js::IsAsmJSModule(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
bool rval = false;
if (JSFunction* fun = MaybeWrappedNativeFunction(args.get(0)))
rval = IsAsmJSModule(fun);
args.rval().set(BooleanValue(rval));
return true;
}
bool
js::IsAsmJSFunction(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
bool rval = false;
if (JSFunction* fun = MaybeWrappedNativeFunction(args.get(0)))
rval = IsAsmJSFunction(fun);
args.rval().set(BooleanValue(rval));
return true;
}
bool
js::IsAsmJSModuleLoadedFromCache(JSContext* cx, unsigned argc, Value* vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSFunction* fun = MaybeWrappedNativeFunction(args.get(0));
if (!fun || !IsAsmJSModule(fun)) {
JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_USE_ASM_TYPE_FAIL,
"argument passed to isAsmJSModuleLoadedFromCache is not a "
"validated asm.js module");
return false;
}
bool loadedFromCache =
AsmJSModuleFunctionToModule(fun).metadata().asAsmJS().cacheResult == CacheResult::Hit;
args.rval().set(BooleanValue(loadedFromCache));
return true;
}
/*****************************************************************************/
// asm.js toString/toSource support
JSString*
js::AsmJSModuleToString(JSContext* cx, HandleFunction fun, bool addParenToLambda)
{
MOZ_ASSERT(IsAsmJSModule(fun));
const AsmJSMetadata& metadata = AsmJSModuleFunctionToModule(fun).metadata().asAsmJS();
uint32_t begin = metadata.preludeStart;
uint32_t end = metadata.srcEndAfterCurly();
ScriptSource* source = metadata.scriptSource.get();
StringBuffer out(cx);
if (addParenToLambda && fun->isLambda() && !out.append("("))
return nullptr;
bool haveSource = source->hasSourceData();
if (!haveSource && !JSScript::loadSource(cx, source, &haveSource))
return nullptr;
if (!haveSource) {
if (!out.append("function "))
return nullptr;
if (fun->explicitName() && !out.append(fun->explicitName()))
return nullptr;
if (!out.append("() {\n [sourceless code]\n}"))
return nullptr;
} else {
Rooted<JSFlatString*> src(cx, source->substring(cx, begin, end));
if (!src)
return nullptr;
if (!out.append(src))
return nullptr;
}
if (addParenToLambda && fun->isLambda() && !out.append(")"))
return nullptr;
return out.finishString();
}
JSString*
js::AsmJSFunctionToString(JSContext* cx, HandleFunction fun)
{
MOZ_ASSERT(IsAsmJSFunction(fun));
const AsmJSMetadata& metadata = ExportedFunctionToInstance(fun).metadata().asAsmJS();
const AsmJSExport& f = metadata.lookupAsmJSExport(ExportedFunctionToFuncIndex(fun));
uint32_t begin = metadata.srcStart + f.startOffsetInModule();
uint32_t end = metadata.srcStart + f.endOffsetInModule();
ScriptSource* source = metadata.scriptSource.get();
StringBuffer out(cx);
if (!out.append("function "))
return nullptr;
bool haveSource = source->hasSourceData();
if (!haveSource && !JSScript::loadSource(cx, source, &haveSource))
return nullptr;
if (!haveSource) {
// asm.js functions can't be anonymous
MOZ_ASSERT(fun->explicitName());
if (!out.append(fun->explicitName()))
return nullptr;
if (!out.append("() {\n [sourceless code]\n}"))
return nullptr;
} else {
Rooted<JSFlatString*> src(cx, source->substring(cx, begin, end));
if (!src)
return nullptr;
if (!out.append(src))
return nullptr;
}
return out.finishString();
}
bool
js::IsValidAsmJSHeapLength(uint32_t length)
{
if (length < MinHeapLength)
return false;
return wasm::IsValidARMImmediate(length);
}