Mypal/ipc/chromium/src/base/message_loop.cc

580 lines
17 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop.h"
#include <algorithm>
#include "mozilla/Atomics.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/message_pump_default.h"
#include "base/string_util.h"
#include "base/thread_local.h"
#if defined(OS_MACOSX)
#include "base/message_pump_mac.h"
#endif
#if defined(OS_POSIX)
#include "base/message_pump_libevent.h"
#endif
#if defined(OS_LINUX) || defined(OS_BSD) || defined (OS_SOLARIS)
#if defined(MOZ_WIDGET_GTK)
#include "base/message_pump_glib.h"
#endif
#endif
#ifdef ANDROID
#include "base/message_pump_android.h"
#endif
#ifdef MOZ_TASK_TRACER
#include "GeckoTaskTracer.h"
#include "TracedTaskCommon.h"
#endif
#include "MessagePump.h"
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
using mozilla::Move;
using mozilla::Runnable;
static base::ThreadLocalPointer<MessageLoop>& get_tls_ptr() {
static base::ThreadLocalPointer<MessageLoop> tls_ptr;
return tls_ptr;
}
//------------------------------------------------------------------------------
// Logical events for Histogram profiling. Run with -message-loop-histogrammer
// to get an accounting of messages and actions taken on each thread.
static const int kTaskRunEvent = 0x1;
static const int kTimerEvent = 0x2;
// Provide range of message IDs for use in histogramming and debug display.
static const int kLeastNonZeroMessageId = 1;
static const int kMaxMessageId = 1099;
static const int kNumberOfDistinctMessagesDisplayed = 1100;
//------------------------------------------------------------------------------
#if defined(OS_WIN)
// Upon a SEH exception in this thread, it restores the original unhandled
// exception filter.
static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
::SetUnhandledExceptionFilter(old_filter);
return EXCEPTION_CONTINUE_SEARCH;
}
// Retrieves a pointer to the current unhandled exception filter. There
// is no standalone getter method.
static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL;
top_filter = ::SetUnhandledExceptionFilter(0);
::SetUnhandledExceptionFilter(top_filter);
return top_filter;
}
#endif // defined(OS_WIN)
//------------------------------------------------------------------------------
// static
MessageLoop* MessageLoop::current() {
return get_tls_ptr().Get();
}
static mozilla::Atomic<int32_t> message_loop_id_seq(0);
MessageLoop::MessageLoop(Type type, nsIThread* aThread)
: type_(type),
id_(++message_loop_id_seq),
nestable_tasks_allowed_(true),
exception_restoration_(false),
state_(NULL),
run_depth_base_(1),
#ifdef OS_WIN
os_modal_loop_(false),
#endif // OS_WIN
transient_hang_timeout_(0),
permanent_hang_timeout_(0),
next_sequence_num_(0) {
DCHECK(!current()) << "should only have one message loop per thread";
get_tls_ptr().Set(this);
switch (type_) {
case TYPE_MOZILLA_PARENT:
MOZ_RELEASE_ASSERT(!aThread);
pump_ = new mozilla::ipc::MessagePump(aThread);
return;
case TYPE_MOZILLA_CHILD:
MOZ_RELEASE_ASSERT(!aThread);
pump_ = new mozilla::ipc::MessagePumpForChildProcess();
// There is a MessageLoop Run call from XRE_InitChildProcess
// and another one from MessagePumpForChildProcess. The one
// from MessagePumpForChildProcess becomes the base, so we need
// to set run_depth_base_ to 2 or we'll never be able to process
// Idle tasks.
run_depth_base_ = 2;
return;
case TYPE_MOZILLA_NONMAINTHREAD:
pump_ = new mozilla::ipc::MessagePumpForNonMainThreads(aThread);
return;
#if defined(OS_WIN)
case TYPE_MOZILLA_NONMAINUITHREAD:
pump_ = new mozilla::ipc::MessagePumpForNonMainUIThreads(aThread);
return;
#endif
default:
// Create one of Chromium's standard MessageLoop types below.
break;
}
#if defined(OS_WIN)
// TODO(rvargas): Get rid of the OS guards.
if (type_ == TYPE_DEFAULT) {
pump_ = new base::MessagePumpDefault();
} else if (type_ == TYPE_IO) {
pump_ = new base::MessagePumpForIO();
} else {
DCHECK(type_ == TYPE_UI);
pump_ = new base::MessagePumpForUI();
}
#elif defined(OS_POSIX)
if (type_ == TYPE_UI) {
#if defined(OS_MACOSX)
pump_ = base::MessagePumpMac::Create();
#elif defined(OS_LINUX) || defined(OS_BSD) || defined(OS_SOLARIS)
pump_ = new base::MessagePumpForUI();
#endif // OS_LINUX
} else if (type_ == TYPE_IO) {
pump_ = new base::MessagePumpLibevent();
} else {
pump_ = new base::MessagePumpDefault();
}
#endif // OS_POSIX
}
MessageLoop::~MessageLoop() {
DCHECK(this == current());
// Let interested parties have one last shot at accessing this.
FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
WillDestroyCurrentMessageLoop());
DCHECK(!state_);
// Clean up any unprocessed tasks, but take care: deleting a task could
// result in the addition of more tasks (e.g., via DeleteSoon). We set a
// limit on the number of times we will allow a deleted task to generate more
// tasks. Normally, we should only pass through this loop once or twice. If
// we end up hitting the loop limit, then it is probably due to one task that
// is being stubborn. Inspect the queues to see who is left.
bool did_work;
for (int i = 0; i < 100; ++i) {
DeletePendingTasks();
ReloadWorkQueue();
// If we end up with empty queues, then break out of the loop.
did_work = DeletePendingTasks();
if (!did_work)
break;
}
DCHECK(!did_work);
// OK, now make it so that no one can find us.
get_tls_ptr().Set(NULL);
}
void MessageLoop::AddDestructionObserver(DestructionObserver *obs) {
DCHECK(this == current());
destruction_observers_.AddObserver(obs);
}
void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) {
DCHECK(this == current());
destruction_observers_.RemoveObserver(obs);
}
void MessageLoop::Run() {
AutoRunState save_state(this);
RunHandler();
}
// Runs the loop in two different SEH modes:
// enable_SEH_restoration_ = false : any unhandled exception goes to the last
// one that calls SetUnhandledExceptionFilter().
// enable_SEH_restoration_ = true : any unhandled exception goes to the filter
// that was existed before the loop was run.
void MessageLoop::RunHandler() {
#if defined(OS_WIN)
if (exception_restoration_) {
LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
MOZ_SEH_TRY {
RunInternal();
} MOZ_SEH_EXCEPT(SEHFilter(current_filter)) {
}
return;
}
#endif
RunInternal();
}
//------------------------------------------------------------------------------
void MessageLoop::RunInternal() {
DCHECK(this == current());
pump_->Run(this);
}
//------------------------------------------------------------------------------
// Wrapper functions for use in above message loop framework.
bool MessageLoop::ProcessNextDelayedNonNestableTask() {
if (state_->run_depth > run_depth_base_)
return false;
if (deferred_non_nestable_work_queue_.empty())
return false;
RefPtr<Runnable> task = deferred_non_nestable_work_queue_.front().task.forget();
deferred_non_nestable_work_queue_.pop();
RunTask(task.forget());
return true;
}
//------------------------------------------------------------------------------
void MessageLoop::Quit() {
DCHECK(current() == this);
if (state_) {
state_->quit_received = true;
} else {
NOTREACHED() << "Must be inside Run to call Quit";
}
}
void MessageLoop::PostTask(already_AddRefed<Runnable> task) {
PostTask_Helper(Move(task), 0);
}
void MessageLoop::PostDelayedTask(already_AddRefed<Runnable> task, int delay_ms) {
PostTask_Helper(Move(task), delay_ms);
}
void MessageLoop::PostIdleTask(already_AddRefed<Runnable> task) {
DCHECK(current() == this);
MOZ_ASSERT(NS_IsMainThread());
PendingTask pending_task(Move(task), false);
deferred_non_nestable_work_queue_.push(Move(pending_task));
}
// Possibly called on a background thread!
void MessageLoop::PostTask_Helper(already_AddRefed<Runnable> task, int delay_ms) {
if (nsIEventTarget* target = pump_->GetXPCOMThread()) {
nsresult rv;
if (delay_ms) {
rv = target->DelayedDispatch(Move(task), delay_ms);
} else {
rv = target->Dispatch(Move(task), 0);
}
MOZ_ALWAYS_SUCCEEDS(rv);
return;
}
PendingTask pending_task(Move(task), true);
if (delay_ms > 0) {
pending_task.delayed_run_time =
TimeTicks::Now() + TimeDelta::FromMilliseconds(delay_ms);
} else {
DCHECK(delay_ms == 0) << "delay should not be negative";
}
// Warning: Don't try to short-circuit, and handle this thread's tasks more
// directly, as it could starve handling of foreign threads. Put every task
// into this queue.
RefPtr<base::MessagePump> pump;
{
AutoLock locked(incoming_queue_lock_);
incoming_queue_.push(Move(pending_task));
pump = pump_;
}
// Since the incoming_queue_ may contain a task that destroys this message
// loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
// We use a stack-based reference to the message pump so that we can call
// ScheduleWork outside of incoming_queue_lock_.
pump->ScheduleWork();
}
void MessageLoop::SetNestableTasksAllowed(bool allowed) {
if (nestable_tasks_allowed_ != allowed) {
nestable_tasks_allowed_ = allowed;
if (!nestable_tasks_allowed_)
return;
// Start the native pump if we are not already pumping.
pump_->ScheduleWorkForNestedLoop();
}
}
void MessageLoop::ScheduleWork() {
// Start the native pump if we are not already pumping.
pump_->ScheduleWork();
}
bool MessageLoop::NestableTasksAllowed() const {
return nestable_tasks_allowed_;
}
//------------------------------------------------------------------------------
void MessageLoop::RunTask(already_AddRefed<Runnable> aTask) {
DCHECK(nestable_tasks_allowed_);
// Execute the task and assume the worst: It is probably not reentrant.
nestable_tasks_allowed_ = false;
RefPtr<Runnable> task = aTask;
task->Run();
task = nullptr;
nestable_tasks_allowed_ = true;
}
bool MessageLoop::DeferOrRunPendingTask(PendingTask&& pending_task) {
if (pending_task.nestable || state_->run_depth <= run_depth_base_) {
RunTask(pending_task.task.forget());
// Show that we ran a task (Note: a new one might arrive as a
// consequence!).
return true;
}
// We couldn't run the task now because we're in a nested message loop
// and the task isn't nestable.
deferred_non_nestable_work_queue_.push(Move(pending_task));
return false;
}
void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
// Move to the delayed work queue. Initialize the sequence number
// before inserting into the delayed_work_queue_. The sequence number
// is used to faciliate FIFO sorting when two tasks have the same
// delayed_run_time value.
PendingTask new_pending_task(pending_task);
new_pending_task.sequence_num = next_sequence_num_++;
delayed_work_queue_.push(Move(new_pending_task));
}
void MessageLoop::ReloadWorkQueue() {
// We can improve performance of our loading tasks from incoming_queue_ to
// work_queue_ by waiting until the last minute (work_queue_ is empty) to
// load. That reduces the number of locks-per-task significantly when our
// queues get large.
if (!work_queue_.empty())
return; // Wait till we *really* need to lock and load.
// Acquire all we can from the inter-thread queue with one lock acquisition.
{
AutoLock lock(incoming_queue_lock_);
if (incoming_queue_.empty())
return;
std::swap(incoming_queue_, work_queue_);
DCHECK(incoming_queue_.empty());
}
}
bool MessageLoop::DeletePendingTasks() {
MOZ_ASSERT(work_queue_.empty());
bool did_work = !deferred_non_nestable_work_queue_.empty();
while (!deferred_non_nestable_work_queue_.empty()) {
deferred_non_nestable_work_queue_.pop();
}
did_work |= !delayed_work_queue_.empty();
while (!delayed_work_queue_.empty()) {
delayed_work_queue_.pop();
}
return did_work;
}
bool MessageLoop::DoWork() {
if (!nestable_tasks_allowed_) {
// Task can't be executed right now.
return false;
}
for (;;) {
ReloadWorkQueue();
if (work_queue_.empty())
break;
// Execute oldest task.
do {
PendingTask pending_task = Move(work_queue_.front());
work_queue_.pop();
if (!pending_task.delayed_run_time.is_null()) {
// NB: Don't move, because we use this later!
AddToDelayedWorkQueue(pending_task);
// If we changed the topmost task, then it is time to re-schedule.
if (delayed_work_queue_.top().task == pending_task.task)
pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
} else {
if (DeferOrRunPendingTask(Move(pending_task)))
return true;
}
} while (!work_queue_.empty());
}
// Nothing happened.
return false;
}
bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
*next_delayed_work_time = TimeTicks();
return false;
}
if (delayed_work_queue_.top().delayed_run_time > TimeTicks::Now()) {
*next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
return false;
}
PendingTask pending_task = delayed_work_queue_.top();
delayed_work_queue_.pop();
if (!delayed_work_queue_.empty())
*next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
return DeferOrRunPendingTask(Move(pending_task));
}
bool MessageLoop::DoIdleWork() {
if (ProcessNextDelayedNonNestableTask())
return true;
if (state_->quit_received)
pump_->Quit();
return false;
}
//------------------------------------------------------------------------------
// MessageLoop::AutoRunState
MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) {
// Make the loop reference us.
previous_state_ = loop_->state_;
if (previous_state_) {
run_depth = previous_state_->run_depth + 1;
} else {
run_depth = 1;
}
loop_->state_ = this;
// Initialize the other fields:
quit_received = false;
#if defined(OS_WIN)
dispatcher = NULL;
#endif
}
MessageLoop::AutoRunState::~AutoRunState() {
loop_->state_ = previous_state_;
}
//------------------------------------------------------------------------------
// MessageLoop::PendingTask
bool MessageLoop::PendingTask::operator<(const PendingTask& other) const {
// Since the top of a priority queue is defined as the "greatest" element, we
// need to invert the comparison here. We want the smaller time to be at the
// top of the heap.
if (delayed_run_time < other.delayed_run_time)
return false;
if (delayed_run_time > other.delayed_run_time)
return true;
// If the times happen to match, then we use the sequence number to decide.
// Compare the difference to support integer roll-over.
return (sequence_num - other.sequence_num) > 0;
}
//------------------------------------------------------------------------------
// MessageLoopForUI
#if defined(OS_WIN)
void MessageLoopForUI::Run(Dispatcher* dispatcher) {
AutoRunState save_state(this);
state_->dispatcher = dispatcher;
RunHandler();
}
void MessageLoopForUI::AddObserver(Observer* observer) {
pump_win()->AddObserver(observer);
}
void MessageLoopForUI::RemoveObserver(Observer* observer) {
pump_win()->RemoveObserver(observer);
}
void MessageLoopForUI::WillProcessMessage(const MSG& message) {
pump_win()->WillProcessMessage(message);
}
void MessageLoopForUI::DidProcessMessage(const MSG& message) {
pump_win()->DidProcessMessage(message);
}
void MessageLoopForUI::PumpOutPendingPaintMessages() {
pump_ui()->PumpOutPendingPaintMessages();
}
#endif // defined(OS_WIN)
//------------------------------------------------------------------------------
// MessageLoopForIO
#if defined(OS_WIN)
void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
pump_io()->RegisterIOHandler(file, handler);
}
bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
return pump_io()->WaitForIOCompletion(timeout, filter);
}
#elif defined(OS_POSIX)
bool MessageLoopForIO::WatchFileDescriptor(int fd,
bool persistent,
Mode mode,
FileDescriptorWatcher *controller,
Watcher *delegate) {
return pump_libevent()->WatchFileDescriptor(
fd,
persistent,
static_cast<base::MessagePumpLibevent::Mode>(mode),
controller,
delegate);
}
bool
MessageLoopForIO::CatchSignal(int sig,
SignalEvent* sigevent,
SignalWatcher* delegate)
{
return pump_libevent()->CatchSignal(sig, sigevent, delegate);
}
#endif